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Persistence of Memory
- Salvador Dali
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Outline  (Tutorial)

• What and Why are Elastic Fluid?

• Active Scalar Transport in 2D MHD: Background and 

Conventional Wisdom

• New Development: “Blobs and Barriers”

– Intermittent Field

– Transport Barriers Form

• Revisting Quenching: Role of Barriers and Blobs



Outline, cont’d

• Barrier Formation: Negative Diffusion and Bifurcation

• Hints of Staircases

• Open Questions

• Back-up Material and CHNS



What is an Elastic Fluid?



Elastic Fluid -> Oldroyd-B Family Models

• 𝛾𝛾 𝑑𝑑𝑟𝑟1,2
𝑑𝑑𝑑𝑑

− �⃑�𝑣 𝑟𝑟1,2, 𝑡𝑡 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟1,2

+ 𝜉𝜉 , where 𝑈𝑈 = 𝑘𝑘
2
𝑟𝑟1 − 𝑟𝑟2 2 + ⋯

• so 𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= �⃑�𝑣 𝑅𝑅, 𝑡𝑡 + 𝜉𝜉/𝛾𝛾 , and 𝑑𝑑𝑞𝑞
𝑑𝑑𝑑𝑑

= �⃑�𝑞 ⋅ 𝛻𝛻 �⃑�𝑣 𝑅𝑅, 𝑡𝑡 − 2
𝛾𝛾
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

+ noise

→ Solution
of DumbellsH2O

𝑟𝑟1 𝑟𝑟2← �⃑�𝑞 →

𝑅𝑅 = 𝑟𝑟1-
𝑟𝑟2�⃑�𝑣(𝑟𝑟1, 𝑡𝑡) �⃑�𝑣(𝑟𝑟2, 𝑡𝑡) Internal DoF

i.e. polymers

stokes
drag

entropic
spring

noise



Seek 𝑓𝑓(�⃑�𝑞,𝑅𝑅, 𝑡𝑡|�⃑�𝑣, … ) → distribution

• 𝜕𝜕𝑑𝑑𝑓𝑓 + 𝜕𝜕𝑅𝑅 ⋅ �⃑�𝑣 𝑅𝑅, 𝑡𝑡 𝑓𝑓 + 𝜕𝜕𝑞𝑞 ⋅ �⃑�𝑞 ⋅ 𝛻𝛻�⃑�𝑣 𝑅𝑅, 𝑡𝑡 𝑓𝑓 − 2
𝛾𝛾
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞
𝑓𝑓

= 𝜕𝜕𝑅𝑅 ⋅ 𝐃𝐃0 ⋅
𝜕𝜕𝑓𝑓
𝜕𝜕𝑅𝑅

+ 𝜕𝜕𝑞𝑞 ⋅ 𝐃𝐃q ⋅
𝜕𝜕𝑓𝑓
𝜕𝜕𝑞𝑞

• and moments:

𝑄𝑄𝑖𝑖𝑖𝑖 𝑅𝑅, 𝑡𝑡 = ∫ 𝑑𝑑3𝑞𝑞 𝑞𝑞𝑖𝑖𝑞𝑞𝑖𝑖𝑓𝑓(�⃑�𝑞,𝑅𝑅, 𝑡𝑡) → elastic energy field (tensor)

• so:
𝜕𝜕𝑑𝑑𝑄𝑄𝑖𝑖𝑖𝑖 + �⃑�𝑣 � 𝛻𝛻𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑖𝑖𝛾𝛾𝜕𝜕𝛾𝛾𝑣𝑣𝑖𝑖 + 𝑄𝑄𝑖𝑖𝛾𝛾𝜕𝜕𝛾𝛾𝑣𝑣𝑖𝑖

−𝜔𝜔𝑧𝑧𝑄𝑄𝑖𝑖𝑖𝑖 + 𝐷𝐷0𝛻𝛻2𝑄𝑄𝑖𝑖𝑖𝑖 + 4 𝑘𝑘𝐵𝐵𝑇𝑇
𝛾𝛾
𝛿𝛿𝑖𝑖𝑖𝑖

• Defines Deborah number: 𝛻𝛻�⃑�𝑣/𝜔𝜔z

N.B.: Is F.P. valid?

strain

relaxation

and concentration
equation



• 𝐷𝐷 ~  Deborah Number  ~  𝛻𝛻𝑉𝑉 /𝜔𝜔𝑍𝑍 ~  𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑

• Limit for elasticity:  𝐷𝐷  ≫ 1

• Why “Deborah”? 

Hebrew Prophetess Deborah: 

“The moutains flowed before the Lord.” (Judges)

∴

• Revisit Heraclitus (1500 years later):

“All things flow” – if you can wait long enough



Reaction on Dynamics

• 𝜌𝜌[𝜕𝜕𝑑𝑑𝑣𝑣𝑖𝑖 + �⃑�𝑣 � 𝛻𝛻𝑣𝑣𝑖𝑖] = −𝛻𝛻𝑖𝑖𝑃𝑃 + 𝛻𝛻𝑖𝑖 ⋅ [𝑐𝑐𝑝𝑝𝑘𝑘𝑄𝑄𝑖𝑖𝑖𝑖] + 𝜂𝜂𝛻𝛻2𝑣𝑣𝑖𝑖 + 𝑓𝑓𝑖𝑖

• Classic systems; Oldroyd-B (1950).
• Extend to nonlinear springs (FENE), rods, rods +

springs, networks, director fields, etc…
• Supports elastic waves and fluid dynamics, depending

on Deborah number.
• Oldroyd-B ↔ active tensor field  elastic stress

See: Ogilvie, Proctor; Bird et. al.



Constitutive Relations

J. C. Maxwell:

(stress) + 𝜏𝜏𝑅𝑅
𝑑𝑑(stress)

𝑑𝑑𝑑𝑑
= 𝜂𝜂 𝑑𝑑

𝑑𝑑𝑑𝑑
(strain)

If 𝜏𝜏𝑅𝑅/𝑇𝑇 = 𝐷𝐷 ≪ 1, stress = 𝜂𝜂 𝑑𝑑
𝑑𝑑𝑑𝑑

(strain)

Π = - 𝜂𝜂𝛻𝛻�⃑�𝑣

If 𝜏𝜏𝑅𝑅/𝑇𝑇 = 𝐷𝐷 ≫ 1, stress ≅ 𝜂𝜂
𝜏𝜏𝑅𝑅

(strain)

~ E (strain)

Limit of “freezing-in”: D≫1 is criterion.

relaxation viscosity

𝑇𝑇 ≡ dynamic
time scale

viscous

elastic



Re-writing Oldroyd-B:

𝜕𝜕
𝜕𝜕𝑑𝑑
𝐓𝐓 + �⃑�𝑣 � 𝛻𝛻𝐓𝐓 − 𝐓𝐓 ⋅ 𝛻𝛻�⃑�𝑣 − 𝛻𝛻�⃑�𝑣 𝑇𝑇 ⋅ 𝐓𝐓 =

1
𝜏𝜏 (𝐓𝐓 −

𝜇𝜇
𝜏𝜏 𝐈𝐈)

MHD: 𝐓𝐓𝑚𝑚 = 𝐵𝐵𝐵𝐵
4𝜋𝜋
 Maxwell Stress Tensor

𝜕𝜕𝑑𝑑𝐵𝐵 + �⃑�𝑣 � 𝛻𝛻𝐵𝐵 = 𝐵𝐵 � 𝛻𝛻�⃑�𝑣 + 𝜂𝜂𝛻𝛻2𝐵𝐵

So

𝜕𝜕
𝜕𝜕𝑑𝑑
𝐓𝐓𝑚𝑚 + �⃑�𝑣 � 𝛻𝛻𝐓𝐓𝑚𝑚 − 𝐓𝐓𝑚𝑚 ⋅ 𝛻𝛻�⃑�𝑣 − 𝛻𝛻�⃑�𝑣 𝑇𝑇 ⋅ 𝐓𝐓𝑚𝑚 = 𝜂𝜂[𝐵𝐵𝛻𝛻2𝐵𝐵 + (𝛻𝛻2𝐵𝐵)𝐵𝐵]

 lim
𝐷𝐷→∞

(Oldroyd-B) ⟺ lim
𝑅𝑅𝑚𝑚→∞

(MHD)

Relation to MHD?!

𝐓𝐓 ≡ stress

High 𝑅𝑅𝑚𝑚 MHD is a good 
example of an Elastic Fluid!



• High Rm  High D

 Elasticity

• High Rm  ~ Freezing in 

~ Memory

• Elastic fluids have memory

 Implications of memory for Transport, Mixing



Active Scalar Transport 

in 2D MHD:

Background and 

Conventional Wisdom



𝜕𝜕𝑑𝑑𝛻𝛻2𝜙𝜙 + 𝛻𝛻𝜙𝜙 × �̂�𝑧 ⋅ 𝛻𝛻𝛻𝛻2𝜙𝜙 = 𝛻𝛻𝐴𝐴 × �̂�𝑧 ⋅ 𝛻𝛻𝛻𝛻2𝐴𝐴 + 𝜈𝜈𝛻𝛻2𝛻𝛻2𝜙𝜙 + 𝑓𝑓

𝜕𝜕𝑑𝑑𝐴𝐴 + 𝑉𝑉 ⋅ 𝛻𝛻𝐴𝐴 = 𝜂𝜂𝛻𝛻2𝐴𝐴

2D MHD
𝜙𝜙: Potential

𝐴𝐴: Magnetic Potential 



Conserved Quantities (Quadratic)

1. Energy 

𝐸𝐸 = 𝐸𝐸𝐾𝐾 + 𝐸𝐸𝐵𝐵 = �(
𝑣𝑣2

2
+
𝐵𝐵2

2𝜇𝜇0
)𝑑𝑑2𝑥𝑥

2. Mean Square Magnetic Potential

𝐻𝐻𝐴𝐴 = �𝐴𝐴2 𝑑𝑑2𝑥𝑥

3. Cross Helicity

𝐻𝐻𝐶𝐶 = � �⃑�𝑣 � 𝐵𝐵𝑑𝑑2𝑥𝑥

 critical constraint

 induces dual cascade

- zeroed ab-initio



 N.B.: What ‘cascade’ is fundamental in 2D MHD?   

(A. Pouquet)

• Conventional Wisdom: Energy

• Is this merely the convention from fluids?

• 〈𝐴𝐴2〉 conservation reflects freezing-in, etc.

• Is inverse cascade 〈𝐴𝐴2〉 fundamental?

• 𝐴𝐴2 ↔ 2D

• 𝐴𝐴 ⋅ 𝐵𝐵 ↔ 3D



• Motivation: Why study 2D MHD and Anomalous 

transport/Resistivity?

• All MFE models = Reduced MHD + Assorted Scalar Advection 

Equations

• Reduced MHD = 2D MHD + Shear Alfven Wave

• Key Issues in Fast Relaxation (i.e. ELMs), Reconnection:     

 Hyper-resistivity, anomalous dissipation

• Related to Nonlinear Dynamos and 𝛼𝛼 −quenching

Background



• L. Prandtl: Analogy with kinetic theory

𝑉𝑉𝑇𝑇𝑇 → �𝑉𝑉

𝑙𝑙𝑚𝑚𝑓𝑓𝑝𝑝 → 𝑙𝑙

• 𝑙𝑙 → mixing length.   What 𝑙𝑙 is sets the result

• 𝜂𝜂𝑘𝑘 ≈ �𝑉𝑉 𝑙𝑙  kinematic turbulent resistivity

also obtained via Mean Field Electrodynamics

Ideology of Turbulent Mixing

define 𝐷𝐷𝑇𝑇 ∼ �𝑉𝑉 𝑙𝑙



Physics: Active Scalar Transport
• Magnetic diffusion, 𝜓𝜓 transport are cases of active scalar transport
• (Focus: 2D MHD) (Cattaneo, Vainshtein ’92, Gruzinov, P. D. ’94, ’95)

𝜕𝜕𝑑𝑑𝐴𝐴 + 𝛻𝛻𝜙𝜙 × �̂�𝑧 � 𝛻𝛻𝐴𝐴 = 𝜂𝜂𝛻𝛻2𝐴𝐴
𝜕𝜕𝑑𝑑𝛻𝛻2𝜙𝜙 + 𝛻𝛻𝜙𝜙 × �̂�𝑧 � 𝛻𝛻𝛻𝛻2𝜙𝜙 = 𝛻𝛻𝐴𝐴 × �̂�𝑧 � 𝛻𝛻𝛻𝛻2𝐴𝐴 + 𝜈𝜈𝛻𝛻2𝛻𝛻2𝜙𝜙

• Seek 𝑣𝑣𝑟𝑟𝐴𝐴 = −𝐷𝐷𝑇𝑇
𝜕𝜕 𝐴𝐴
𝜕𝜕𝑟𝑟

− 𝜂𝜂 𝜕𝜕 𝐴𝐴
𝜕𝜕𝑟𝑟

• Point: 𝐷𝐷𝑇𝑇 ≠ ∑𝑘𝑘 |𝑣𝑣𝑘𝑘|2 𝜏𝜏𝑘𝑘
𝐾𝐾 , often substantially less

• Why: Memory! ↔ Freezing-in
• Cross Phase

scalar mixing – the usual

back-reactionturbulent resistivity



Conventional Wisdom

• [Cattaneo and Vainshtein 1991]: turbulent 
transport is suppressed even for a weak large 
scale magnetic field is present.

• Starting point: 
• Assumptions: 

• Energy equipartition:
• Average B can be estimated by:

• Define Mach number as:
• Result for suppression stage:
• Fit together with kinematic stage result: 
• Lack physics interpretation of 𝜂𝜂𝑇𝑇 !

𝑀𝑀2 = 𝑣𝑣𝐴𝐴 2/ �𝑣𝑣2 = 𝑣𝑣2 /𝑣𝑣𝐴𝐴2 = 𝑣𝑣2 /
1
𝜇𝜇0𝜌𝜌

𝐵𝐵2



Origin of Memory?
• (a) flux advection vs flux coalescence

• intrinsic to 2D MHD (and CHNS)
• rooted in inverse cascade of 𝐴𝐴2 - dual cascades

• (b) tendency of (even weak) mean magnetic field to “Alfvenize”
turbulence [cf: vortex disruption feedback threshold!]

• Re (a): Basic physics of 2D MHD



Memory Cont’d

• v.s.

• Obvious analogy: straining vs coalescence; CHNS
• Upshot: closure calculation yields:

Γ𝐴𝐴 = −∑𝑘𝑘′[𝜏𝜏𝑐𝑐
𝜙𝜙 𝑣𝑣2 𝑘𝑘′ − 𝜏𝜏𝑐𝑐𝐴𝐴 𝐵𝐵2 𝑘𝑘′]

𝜕𝜕 𝐴𝐴
𝜕𝜕𝑟𝑟

+ ⋯

flux of potential competition
scalar advection vs. coalescence (“negative resistivity”)

(+) (-)

N.B.:
Coalescence 
 Negative diffusion 
 Bifurcation



Conventional Wisdom, Cont’d

• Then calculate 〈𝐵𝐵2〉 in terms of 〈𝑣𝑣2〉. From:

• Multiplying by 𝐴𝐴 and sum over all modes:

• Therefore:
• Define Mach number as:
• Result:
• This theory is not able to describe 𝐵𝐵 0 → 0

Dropped stationary case Dropped periodic boundary  introduce nonlocality?!



Is this story “the truth, the whole truth and 

nothing but the truth’?

 A Closer Look



Simulation Setup

• PIXIE2D: a DNS code solving 2D MHD equations in real
space:

• 1024^2 resolution.
• External forcing 𝑓𝑓 is isotropic homogeneous.
• Periodic boundary conditions (both).
• Initial conditions:

• (1) bimodal:
• (2) unimodal:



Initial Conditions

Bimodal Unimodal



Two Stage Evolution:

• 1. The suppression stage: 
the (large scale) magnetic
field is sufficiently strong so 
that the diffusion is 
suppressed.

• 2. The kinematic decay stage: 
the magnetic field is 
dissipated so the diffusion 
rate returns to the kinematic 
rate. 

• Suppression is due to the 
memory induced by the 
magnetic field.

suppression
stage

kinematic
stage



New Wrinkles



New Observations

• With no imposed 𝐵𝐵0, in suppression stage:

• v.s. same run, in kinematic stage (trivial):

Field 
Concentrated!



New Observations Cont’d

• Nontrivial structure formed in real space during the
suppression stage.

• 𝐴𝐴 field is evidently composed of “blobs”.
• The low 𝐴𝐴2 regions are 1-dimensional. 
• The high 𝐵𝐵2 regions are strongly correlated with low 
𝐴𝐴2 regions, and also are 1-dimensional.

• We call these 1-dimensional high 𝐵𝐵2 regions 
``barriers'', because these are the regions where 
mixing is reduced, relative to 𝜂𝜂𝐾𝐾.
 Story one of ‘blobs and barriers’



Evolution of PDF of A

• Probability
Density
Function (PDF)
in two stage:

• Time evolution:
horizontal “Y”.

Δ𝐴𝐴

suppression
stage

kinematic
stage

• The PDF changes from double 
peak to single peak as the system 
evolves from the suppression 
stage to the kinematic stage.



2D CHNS and 2D MHD

• The 𝐴𝐴 field in 2D MHD in suppression stage is
strikingly similar to the 𝜓𝜓 field in 2D CHNS (Cahn-
Hilliard Navier-Stokes) system:

𝜓𝜓 field in 2D CHNS 𝐴𝐴 field in 2D MHD
v.s.



• 2D CHNS Equations:

𝜕𝜕𝑑𝑑𝜓𝜓 + �⃑�𝑣 � 𝛻𝛻𝜓𝜓 = 𝐷𝐷𝛻𝛻2(−𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓)

𝜕𝜕𝑑𝑑𝜔𝜔 + �⃑�𝑣 � 𝛻𝛻𝜔𝜔 =
𝜉𝜉2

𝜌𝜌
𝐵𝐵𝜓𝜓 � 𝛻𝛻𝛻𝛻2𝜓𝜓 + 𝜈𝜈𝛻𝛻2𝜔𝜔

With �⃑�𝑣= ̂⃑𝑧𝑧 × 𝛻𝛻𝜙𝜙, 𝜔𝜔 = 𝛻𝛻2𝜙𝜙, 𝐵𝐵𝜓𝜓 = ̂⃑𝑧𝑧 × 𝛻𝛻𝜓𝜓, 𝑗𝑗𝜓𝜓 = 𝜉𝜉2𝛻𝛻2𝜓𝜓. 𝜓𝜓 ∈
[−1,1].
• 2D MHD Equations:

𝜕𝜕𝑑𝑑𝐴𝐴 + �⃑�𝑣 � 𝛻𝛻𝐴𝐴 = 𝜂𝜂𝛻𝛻2𝐴𝐴

𝜕𝜕𝑑𝑑𝜔𝜔 + �⃑�𝑣 � 𝛻𝛻𝜔𝜔 =
1
𝜇𝜇0𝜌𝜌

𝐵𝐵 � 𝛻𝛻𝛻𝛻2𝐴𝐴 + 𝜈𝜈𝛻𝛻2𝜔𝜔

With �⃑�𝑣= ̂⃑𝑧𝑧 × 𝛻𝛻𝜙𝜙, 𝜔𝜔 = 𝛻𝛻2𝜙𝜙, 𝐵𝐵 = ̂⃑𝑧𝑧 × 𝛻𝛻𝐴𝐴, 𝑗𝑗 = 1
𝜇𝜇0
𝛻𝛻2𝐴𝐴

−𝜓𝜓: Negative diffusion term

𝜓𝜓3: Self nonlinear term

−𝜉𝜉2𝛻𝛻2𝜓𝜓 : Hyper-diffusion term

𝐴𝐴: Simple diffusion term

2D CHNS and 2D MHD

See [Fan et.al. 
2016] for more 
about CHNS.



Unimodal Initial Condition

• One may question whether the bimodal PDF feature is 
purely due to the initial condition. The answer is No.

• Two non-zero peaks in PDF of A still arise, even if the 
initial condition is unimodal.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)



The problem of the mean field 〈𝑩𝑩〉
What does mean mean?

• 〈𝐵𝐵〉 depends on the averaging 
window.

• With no imposed external field, 
B is highly intermittent, therefore 
the 〈𝐵𝐵〉 is not well defined.

𝑥𝑥

𝐴𝐴

| 𝐵𝐵 | ∼ 𝐴𝐴2 /𝐿𝐿0✓ 𝐵𝐵 not well defined

v.s.

Reality

𝑥𝑥

𝐴𝐴



Revisiting Quenching



New Understanding
• Summary of important length scales:

• System size 𝐿𝐿0
• Envelope size 𝐿𝐿𝑟𝑟𝑑𝑑𝑒𝑒 emergent (blob)
• Stirring length scale 𝐿𝐿𝑠𝑠𝑑𝑑𝑖𝑖𝑟𝑟
• Turbulence length scale 𝑙𝑙, here we use Taylor microscale 𝜆𝜆
• Barrier width 𝑊𝑊 emergent

• Quench is not uniform. Transport coefficients differ in 
different regions.

• In the regions where magnetic fields are strong, 
𝑅𝑅𝑅𝑅/𝑀𝑀2 is dominant. They are regions of barriers.

• In other regions, i.e. Inside blobs, 𝑅𝑅𝑅𝑅/𝑀𝑀′2 is what 
remains. 𝑀𝑀′2 ≡ 𝑉𝑉2 / 1

𝜌𝜌
𝐴𝐴2 /𝐿𝐿𝑟𝑟𝑑𝑑𝑒𝑒2



New Understanding, cont’d

• From
• Retain 2nd term on RHS. Average taken over an

envelope/blob scale.
• Define diffusion (closure):

• Plugging in:
• For simplicity:

where 𝐿𝐿𝑟𝑟𝑑𝑑𝑒𝑒 is the envelope size. Scale of 𝛻𝛻2〈𝐴𝐴2〉.
• Define new strength parameter:
• Result:



𝜂𝜂𝑇𝑇 = 𝑉𝑉 𝑙𝑙 / 1 +
𝑅𝑅𝑚𝑚
𝑀𝑀2 +

𝑅𝑅𝑚𝑚
𝑀𝑀′2

• Barriers:

𝜂𝜂𝑇𝑇 ≈ 𝑉𝑉 𝑙𝑙 / 1 + 𝑅𝑅𝑚𝑚
𝐵𝐵 2

𝜌𝜌 �𝑉𝑉2

• Blobs:

𝜂𝜂𝑇𝑇 ≈ 𝑉𝑉 𝑙𝑙 / 1 + 𝑅𝑅𝑚𝑚
𝐴𝐴2

𝜌𝜌𝐿𝐿𝑟𝑟𝑑𝑑𝑒𝑒2 �𝑉𝑉2

• Quench stronger in barriers, ,non-uniform

Strong field

Weak effective field



Barrier Formation



Formation of Barriers

• How do the barriers form?

• From above, strong B regions can support negative incremental 

𝜂𝜂𝑇𝑇 𝛿𝛿Γ𝐴𝐴/𝛿𝛿 −𝛻𝛻𝐴𝐴 < 0, suggesting clustering

• 𝜂𝜂𝑇𝑇 > 0

• Positive feedback:  a twist on a familiar theme

B is strong in a specific region diffusion of A is negative

∇A increasesB in that region increases

flux coalescence



Formation of Barriers,  Cont’d

• Negative resistivity leads to barrier formation.
• The S-curve reflects  the dependence of Γ𝐴𝐴  on B.
• When slope  negative ànegative (incremental) resistivity.

Γ𝐴𝐴

- 𝐵𝐵

unstable
negative

Barriers 

Bistability of Γ𝐴𝐴 vs 𝛻𝛻𝐴𝐴

 a familiar theme

Landscape 
unknown

Quenched 𝜂𝜂𝑇𝑇

Kinematic

𝜂𝜂𝐾𝐾



Describing the Barriers

• How to measure the barrier width 𝑊𝑊.
• Starting point: 

• Use 〈𝐴𝐴2〉 to calculate Δ𝐴𝐴
• Define the barrier regions as: 
• Define barrier packing fraction:
• Use use the magnetic fields in the barrier regions to 

calculate the magnetic energy:
• Thus
• So barrier width can be estimated by:
N.B. All magnetic energy in the barriers

arbitrary threshold



Describing the Barriers

• Time evolution of 𝑃𝑃 and 𝑊𝑊:
- P, W collapse in decay
- 𝑀𝑀′ rises

• Sensitivity of 𝑊𝑊:
• 𝐴𝐴0 or 1/𝜇𝜇0𝜌𝜌 greater 𝑊𝑊 greater;
• 𝑓𝑓0 greater, 𝑊𝑊 smaller; (ala’ Hinze)
• 𝑊𝑊 not sensitive to 𝜂𝜂 or 𝜈𝜈.

(a) (b) (c) (d) (e)



Staircase (inhomogeneous Mixing, Bistability)

• Staircases emerge spontaneously! - Barriers
• Initial condition is the usual cos function (bimodal)
• The only major sensitive parameter (from runs above) 

is the forcing scale is k=32 (for all runs above k=5).
• Resembles the staircase in MFE.

(1) (2) (3) (4)



• Magnetic fields suppress turbulent diffusion in 2D 
MHD by: formation of intermittent transport barriers.

• Magnetic structures:
• Quench not uniform:

• Barriers form due to negative resistivity:

• Formation of “magnetic staircases” observed for some 
stirring scale

Conclusions / Summary

Barriers – thin, 1D strong field regions
Blobs – 2D, weak field regions

barriers, strong B blobs, weak B, 𝛻𝛻2〈𝐴𝐴2〉 remains

Γ𝐴𝐴

- 𝐵𝐵
flux coalescence



General Conclusions (MHD and CHNS)

• Dual (or multiple) cascades can interact with each other, 
and one can modify another.

• We also show how a length scale, e.g. the Hinze scale in 2D 
CHNS, emerges from the balance of kinetic energy and 
elastic energy in blobby turbulence.  blob scale in MHD?!

• We see that negative incremental diffusion (flux/blob 
coalescence) can lead to novel real space structure in a 
simple system.

• Negative incremental resistivity can exist in a simple system 
such as 2D MHD. This results in the formation of nontrivial 
real space structure.



Future Works

• Extension of the transport study in MHD:
• Numerical tests of the new 𝜂𝜂𝑇𝑇 expression ?
• What determines the barrier width and packing fraction ?
• Why does layering appear when the forcing scale is small ?
• What determines the step width, in the case of layering 
• The transport study may also be extended to 3D MHD ( 𝑨𝑨 ⋅ 𝑩𝑩

important instead of 𝐴𝐴2 ) 

• Other similar systems can also be studied in this spirit. e.g. 
Oldroyd-B model for polymer solutions. (drag reduction)

• Reduced Model of Magnetic Staircase



• PRE Rap Comm 99, 041201 (2019)

• PoP 25, 055702 (2018)

• PRE Rap Comm 96, 041101 (2017)

• Phys Rev Fluids 1, 054403 (2016)
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Back-Up



2D CHNS (Cahn-Hilliard Navier-Stokes) 
• The Cahn-Hilliard Navier-Stokes (CHNS) system describes

separation of components for binary fluid (i.e. Spinodal
Decomposition)

• Miscible phase -> Immiscible phase

AB



A-rich 
phase 

B-rich 
phase 

2D CHNS
• How to describe the system: the concentration field

• 𝜓𝜓 𝑟𝑟, 𝑡𝑡 ≝ [𝜌𝜌𝐴𝐴 𝑟𝑟, 𝑡𝑡 − 𝜌𝜌𝐵𝐵 𝑟𝑟, 𝑡𝑡 ]/𝜌𝜌 : scalar field

• 𝜓𝜓 ∈ [−1,1]

• CHNS equations:

𝜕𝜕𝑑𝑑𝜓𝜓 + �⃑�𝑣 � 𝛻𝛻𝜓𝜓 = 𝐷𝐷𝛻𝛻2(−𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓)

𝜕𝜕𝑑𝑑𝜔𝜔 + �⃑�𝑣 � 𝛻𝛻𝜔𝜔 =
𝜉𝜉2

𝜌𝜌
𝐵𝐵𝜓𝜓 � 𝛻𝛻𝛻𝛻2𝜓𝜓 + 𝜈𝜈𝛻𝛻2𝜔𝜔

• 2D MHD and 2D CHNS: analogous. Elasticity; elastic
wave; conserved quantities; cascades; etc.



Challenges – Dual Cascade

• Some key issues to understanding active scalar
turbulence: 

1. the physics of dual (or multiple) cascades;
2. the nature of “blobby” turbulence;
3. the effects of negative diffusion/resistivity;
4. the understanding of turbulent transport.

1. Dual Cascade
• Physics of dual cascades and constrained relaxation

relative importance, selective decay…
• Physics of wave-eddy interaction effects on nonlinear 

transfer (i.e. Alfven effect Kraichnan) 
• How do dual cascades interact?



[J. A. Boedo et.al. 2003]

Challenges – Blobby Turbulence

2. “Blobby Turbulence”
• Blobs observed in SOL in Tokamaks.
• CHNS is a naturally blobby system

of turbulence.
• What makes a blob a blob?
• What is the role of structure in

interaction?
• How to understand blob 

coalescence and relation to 
cascades?



Challenges – Negative Diffusion

[Porter 1981]

Spinodal Decomposition3. Zonal flow formation 
negative viscosity phenomena
• ZF can be viewed as a “spinodal

decomposition” of momentum.
• What determines scale?

Arrows:
𝜓𝜓 for CHNS;
flow for ZF.

http://astronomy.nju.edu.cn/~lixd/GA/AT4/AT411/HTML/AT41102.htm

Zonal Flow



Challenges – Turbulent Transport

• 4. Turbulent transport
• Suppressed in 2D MHD by magnetic field.
• Previous understandings: mean field theory
• New observation: blob-and-barrier structure
• Need new understanding



A Brief Derivation of the CHNS Model
• Second order phase transition  Landau Theory.
• Order parameter: 𝜓𝜓 𝑟𝑟, 𝑡𝑡 ≝ [𝜌𝜌𝐴𝐴 𝑟𝑟, 𝑡𝑡 − 𝜌𝜌𝐵𝐵 𝑟𝑟, 𝑡𝑡 ]/𝜌𝜌
• Free energy:

F 𝜓𝜓 = �𝑑𝑑𝑟𝑟(
1
2
𝐶𝐶1𝜓𝜓2 +

1
4
𝐶𝐶2𝜓𝜓4 +

𝜉𝜉2

2
|𝛻𝛻𝜓𝜓|2)

• 𝐶𝐶1(𝑇𝑇), 𝐶𝐶2(𝑇𝑇).
• Isothermal 𝑇𝑇 < 𝑇𝑇𝐶𝐶. Set 𝐶𝐶2 = −𝐶𝐶1 = 1:

F 𝜓𝜓 = �𝑑𝑑𝑟𝑟(−
1
2
𝜓𝜓2 +

1
4
𝜓𝜓4 +

𝜉𝜉2

2
|𝛻𝛻𝜓𝜓|2)

Phase Transition Gradient Penalty



A Brief Derivation of the CHNS Model

• Continuity equation: 𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

+ 𝛻𝛻 � 𝐽𝐽 = 0.

• Fick’s Law: 𝐽𝐽 = −𝐷𝐷𝛻𝛻𝜇𝜇.

• Chemical potential: 𝜇𝜇 = 𝛿𝛿𝐹𝐹 𝜓𝜓
𝛿𝛿𝜓𝜓

= −𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓.

• Combining  Cahn Hilliard equation:
𝑑𝑑𝜓𝜓
𝑑𝑑𝑡𝑡

= 𝐷𝐷𝛻𝛻2𝜇𝜇 = 𝐷𝐷𝛻𝛻2(−𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓)

• 𝑑𝑑𝑑𝑑 = 𝜕𝜕𝑑𝑑 + �⃑�𝑣 � 𝛻𝛻. 
• Surface tension: force in Navier-Stokes equation:

𝜕𝜕𝑑𝑑�⃑�𝑣 + �⃑�𝑣 � 𝛻𝛻�⃑�𝑣 = −
𝛻𝛻𝑝𝑝
𝜌𝜌 − 𝜓𝜓𝛻𝛻𝜇𝜇 + 𝜈𝜈𝛻𝛻2�⃑�𝑣

• For incompressible fluid, 𝛻𝛻 � �⃑�𝑣 = 0.



• CHNS supports linear “elastic” wave:

• Akin to capillary wave at phase interface.
• Propagates only along the interface of the two fluids, where

|𝐵𝐵𝜓𝜓| = |𝛻𝛻𝜓𝜓| ≠ 0.
• Analogue of Alfven wave in MHD (propagates along B lines).
• Important differences: 

𝐵𝐵𝜓𝜓 in CHNS is large only in the interfacial regions.
Elastic wave activity does not fill space.

Linear Wave

Air

Water

Capillary Wave:



Ideal Quadratic Conserved Quantities

• 2D CHNS
1. Energy 
𝐸𝐸 = 𝐸𝐸𝐾𝐾 + 𝐸𝐸𝐵𝐵 = �(

𝑣𝑣2

2
+
𝜉𝜉2𝐵𝐵𝜓𝜓2

2
)𝑑𝑑2𝑥𝑥

2. Mean Square 
Concentration

𝐻𝐻𝜓𝜓 = �𝜓𝜓2 𝑑𝑑2𝑥𝑥

3. Cross Helicity
𝐻𝐻𝐶𝐶 = � �⃑�𝑣 � 𝐵𝐵𝜓𝜓 𝑑𝑑2𝑥𝑥

• 2D MHD
1. Energy 
𝐸𝐸 = 𝐸𝐸𝐾𝐾 + 𝐸𝐸𝐵𝐵 = �(

𝑣𝑣2

2
+
𝐵𝐵2

2𝜇𝜇0
)𝑑𝑑2𝑥𝑥

2. Mean Square Magnetic 
Potential

𝐻𝐻𝐴𝐴 = �𝐴𝐴2 𝑑𝑑2𝑥𝑥

3. Cross Helicity
𝐻𝐻𝐶𝐶 = � �⃑�𝑣 � 𝐵𝐵𝑑𝑑2𝑥𝑥



Scales, Ranges, Trends

• Fluid forcing Fluid straining vs Blob coalescence
• Scale where turbulent straining ~ elastic restoring force (due 

surface tension): Hinze Scale
𝐿𝐿𝐻𝐻~(

𝜌𝜌
𝜉𝜉

)−1/3𝜖𝜖Ω
−2/9

How big is a raindrop?
• Turbulent straining 

vs capillarity.
• 𝜌𝜌𝑣𝑣2 vs 𝜎𝜎/𝑙𝑙.
(Hinze 1955)



• Elastic range: 𝐿𝐿𝐻𝐻 < 𝑙𝑙 < 𝐿𝐿𝑑𝑑: where elastic effects matter.

• 𝐿𝐿𝐻𝐻/𝐿𝐿𝑑𝑑~(𝜌𝜌
𝜉𝜉

)−1/3𝜈𝜈−1/2𝜖𝜖Ω
−1/18 Extent of the elastic range

• 𝐿𝐿𝐻𝐻 ≫ 𝐿𝐿𝑑𝑑 required for large elastic range case of interest

Scales, Ranges, Trends

𝐻𝐻𝜓𝜓 Spectrum
𝐻𝐻𝑘𝑘
𝜓𝜓

𝑘𝑘𝑘𝑘𝑖𝑖𝑑𝑑 𝑘𝑘𝐻𝐻 𝑘𝑘𝑑𝑑

Elastic Range
Hydro-

dynamic 
Range

𝐻𝐻𝑘𝑘
𝜓𝜓 = 𝜓𝜓2

𝑘𝑘



Cascades

• By statistical mechanics studies (absolute 
equilibrium distributions) dual cascade:

• Inverse cascade of 𝜓𝜓2  
• Forward cascade of 𝐸𝐸 

• Blob coalescence in the elastic range of CHNS 
flux coalescence in MHD.

• Inverse cascade of 𝜓𝜓2 is formal expression of blob 
coalescence process generate larger scale 
structures till limited by straining 

• Forward cascade of 𝐸𝐸 as usual, as elastic force
breaks enstrophy conservation 



• 𝐴𝐴2 spectrum: 𝜓𝜓2 spectrum:

• Both systems exhibit 𝑘𝑘−7/3 spectra.
• Inverse cascade of 𝜓𝜓2 exhibits same power law scaling, so 

long as 𝐿𝐿𝐻𝐻 ≫ 𝐿𝐿𝑑𝑑, maintaining elastic range: Robust process.

Power Laws

CHNSMHD
𝑓𝑓𝐴𝐴



𝑓𝑓𝜙𝜙

CHNS

• Kinetic energy spectrum (Surprise!):

• 2D CHNS: 𝐸𝐸𝑘𝑘𝐾𝐾~𝑘𝑘−3;

• 2D MHD: 𝐸𝐸𝑘𝑘𝐾𝐾~𝑘𝑘−3/2.

• The -3 power law:
• Closer to enstrophy cascade range scaling, in 2D Hydro turbulence.
• Remarkable departure from expected -3/2 for MHD. Why? 

• Why does CHNSMHD correspondence hold well for 
𝜓𝜓2

𝑘𝑘~ 𝐴𝐴2 𝑘𝑘~𝑘𝑘−7/3, yet break down drastically for energy?

• What physics underpins this surprise?

More Power Laws

!



Interface Packing Matters!
• Need to understand differences, as well as similarities, 

between CHNS and MHD problems. 

MHD CHNS

In CHNS:
 Elastic back-reaction is limited to regions 

of density contrast i.e. |𝐵𝐵𝜓𝜓| = |𝛻𝛻𝜓𝜓| ≠ 0.
 As blobs coalesce, interfacial region 

diminished. ‘Active region’ of elasticity 
decays.

In MHD:
 Fields pervade system.



• Define the interface packing fraction 𝑃𝑃:

𝑃𝑃 =
# of grid points where |𝐵𝐵𝜓𝜓|>𝐵𝐵𝜓𝜓

𝑟𝑟𝑚𝑚𝑟𝑟

# of total grid points

𝑃𝑃 for CHNS decays;
𝑃𝑃 for MHD stationary!

• 𝜕𝜕𝑑𝑑𝜔𝜔 + �⃑�𝑣 � 𝛻𝛻𝜔𝜔 = 𝜉𝜉2

𝜌𝜌
𝐵𝐵𝜓𝜓 � 𝛻𝛻𝛻𝛻2𝜓𝜓 + 𝜈𝜈𝛻𝛻2𝜔𝜔: small 𝑃𝑃 local

back reaction is weak.
• Weak back reaction reduce to 2D hydro

Interface Packing Matters!



Summary

• Avoid power law tunnel vision!
• Real space realization of the flow is necessary to 

understand key dynamics. Track interfaces and 
packing fraction 𝑃𝑃.

• One player in dual cascade (i.e. 𝜓𝜓2 ) can modify or 
constrain the dynamics of the other (i.e. 𝐸𝐸).

• Against conventional wisdom, 𝜓𝜓2 inverse cascade 
due to blob coalescence is the robust nonlinear 
transfer process in CHNS turbulence.
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