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Basics & critical issues of transport in tokamak plasmas 

Transport & confinement 

Transverse drifts & gyrokinetic framework 

Outline 

|  Page 2 10th Festival de Théorie, Aix-en-Provence, July 2019  CEA  |  Y. Sarazin 

Impact of large scale asymmetries on core impurity transport 

Poloidal asymmetries: experimental evidence & issues 

Turbulence-driven asymmetry… & anisotropy 

Impact on collisional impurity transport 

Impact of asymmetric boundary layer on edge turbulence 

Modelling the unconfined "Scrape-Off Layer" 

The tail & the dog… 



Fusion viability (self-heating)  Lawson criterion 

 ni tE > F(T) 

Fusion & confinement 

|  Page 3 10th Festival de Théorie, Aix-en-Provence, July 2019  CEA  |  Y. Sarazin 

Magnetic confinement: 

Aim = maximizing tE ( 5 s) 

ni  1020m-3 constrained my 

macroscopic instabilities 

tE = 
Energy Content 

Lost Power 

Energy 

confinement time: 

Governed by reaction rate sv 

Depends on temperature T only 

Minimal at T  26 keV D+T    4He + n 



Tokamaks: confinement & transport 
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Toroidal angle j 

Poloidal 

angle q 

Mean helicity q 

Tokamak 

Helical magnetic field lines on nested 

toroidal surfaces y=cst 

Constant j, P on magnetic surfaces 

(jB=P  Geostrophic balance) 

r*  ri / a  2.10- 3 << 1 



Tokamaks: confinement & transport 
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3 motion invariants + 3 periodic directions  confinement 

If axisymmetry: Pj=-ey+mRvj 

If steady E and B fields: E 

If collisionless: m=E/B 

 Broken by Turbulence 

 Broken by Collisions 
 Transport 

Tokamak 

Helical magnetic field lines on nested 

toroidal surfaces y=cst 

Constant j, P on magnetic surfaces 

(jB=P  Geostrophic balance) 

Intrinsic in/out asymmetry B(r,q)R-1 

 passing & trapped orbits 

r 

q R 

r*  ri / a << 1 



Particle trajectories: adiabatic limit 
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 

 Adiabatic limit framework: 

Magnetic field evolves slowly with respect to        and  

10th Festival de Théorie, Aix-en-Provence, July 2019  CEA  |  Y. Sarazin 

 Scale separation: gyro-average = average over fast time scale  

with 

jc rc 
B 

/       << 1 

 Perturbation theory – Solving at leading orders in 

r* = ri / a << 1 



Scale separation: gyro-motion + drifts 
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 Fast motion  cyclotron motion (BG  B(xG)): 
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vG// 

vG 

B 

 electric drift curvature & B  drifts 

Projection on  plane: 

 Slow motion  transverse drifts: 

with 

Adiabatic invariant 

Gyro-average J(krs) 



Physics of Curvature & B Drifts 
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ion        electron 

magnetic field 

 Return currents: parallel electron current (Pfirsch-Schlüter) 

  polarization ion current 

 Vertical charge separation 

 (poloidal asymmetry) 
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Physics of Electric Drift 
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 =    Turbulent transport 

          are canonically conjugated 

for the Hamiltonian 

f analogous to stream function in 

neutral fluid dynamics 

At leading order, 

 particles move at f=cst    (if tf=0 & B=Cst) 
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Trajectory of  

Test Particle 

Typical size of 
thermal  

Larmor radius 



Turbulence: interchange instability 
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Pressure gradient + Field line curvature  instabilities  micro-turbulence 

Interchange: instability if p.B>0 

Fluctuations of E & B fields 

Rayleigh-Bénard 

unstable stable stable g 

Thot 

Tcold Thot Thot 

Tcold Tcold 

> 

> < 

< 

Unstable 

p 

Interchange 

Stable 

p 

B 

Stable/unstable coupling through // current 



Heat  transport = thermoconvection 
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Tokamak plasma turbulence 

Ballooned: in/out asymmetry 

Anisotropic turbulence (quasi-2D): 

k// qR  kri < 1 

Small  scale: r* << 1   (lcorr  a r*) 

Fluid analogue: Rossby  Ro = U / W0 L << 1 

Time scale: 

ncoll  103 << wturb  105 << wci  108 s-1 

Fluctuations of electric potential 

GYSELA 

[Grandgirard CPC 2016]  

Governs heat (& particle, momentum) transport 

(effective diffusivity 1m2/s) 



Maxwell's eqs involve PARTICLE density & current 

Requires non-trivial link between f & fG 

Quasi-neutrality ne(x,t) = Si Zi ni(x,t) 

Adequate framework: gyrokinetics 
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Core plasma weakly collisional (lmfp104 m) 

Trapped electron turbulence 

Fluid assumes long wavelength krs << 1 

 Kinetic description mandatory 

[Littlejohn PoF 1981; Brizard-Hahm RMP 2007; 

Tronko-Brizard PoP 2015]  

From 6D kinetics to 5D gyrokinetics via phase space reduction 

Particle  Gyro-center 

Vlasov  f(x,v//,m,jc,t)  Gyrokinetic equation fG(xG,vG//,m,t) 



Motivations: impurities 
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Understanding / predicting / controlling 

impurity transport 

Dilution at low Z 

Radiation at large Z (tungsten) 

 Synergy turbulent/collisional transport: 

role of poloidal asymmetries?  

[Joffrin 2014] 



Motivations: impurities & edge 
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Understanding / predicting / controlling 

impurity transport 

Dilution at low Z 

Radiation at large Z (tungsten) 

 Synergy turbulent/collisional transport: 

role of poloidal asymmetries?  

[Gerbaud '08] 

[Joffrin 2014] 

Large edge fluctuations in all tokamaks 



Large edge fluctuations in all tokamaks 

Local gyrokinetic models fail… 

… unless invoking large error bars 

 

 Role of asym. flows in unconfined region? 

 Role of turbulence spreading coreedge 

and/or SOLedge? 

Motivations: impurities & edge 
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Understanding / predicting / controlling 

impurity transport 

Dilution at low Z 

Radiation at large Z (tungsten) 

 Synergy turbulent/collisional transport: 

role of poloidal asymmetries?  

[Holland PoP 2011, Goerler PoP 2014, Waltz APS 2017] 

[Mattor-Diamond PoP 1994, Garbet NF 1994] 

r/a 

[Joffrin 2014] 



Basics & critical issues of transport in tokamak plasmas 

Transport & confinement 

Transverse drifts & gyrokinetic framework 

Outline 
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Impact of large scale asymmetries on core impurity transport 

Poloidal asymmetries: experimental evidence & issues 

Turbulence-driven asymmetry… & anisotropy 

Impact on collisional impurity transport 

Impact of asymmetric boundary layer on edge turbulence 

Modelling the unconfined "Scrape-Off Layer" 

The tail & the dog… 



TOP 

Outer equatorial plane 

Faster edge poloidal rotation of turb. at outer equatorial plane than on top 

Cannot be explained by B inhomogeneity vEq  rf / B(r,q) 

Asymmetries: experimental evidence 
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Open issues: 

Possible origin: turbulence-driven? 

Impact on impurity transport? 

[Vermare, PoP 2018] 

Outer 

equatorial 

plane 

TOP 

Poloidal view 

Doppler 

backscattering 

reflectometry 



Asymmetry & impurity transport 
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Convective cells can lead to density asymmetry through adiabatic (Boltzmann) 

response of trace impurities (charge Z): 

Poloidal asymmetry 

Asymmetric density 

 neoclassical prediction of 

impurity flux strongly 

modified 

 

Ratio of neoclassical impurity 

flux with & without  

nZ asymmetry 

[Angioni-Helander (2014)] 



Convective cells: large scale (m=1) axisymmetric (n=0) modes  

of electric potential at intermediate to low frequencies (w << wGAM  cs/R) 

Convective Cells (CC) 
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q 
r 

convective cells 

(axisymmetric) 

R(r,q) 

j 

Possible origins of poloidal asymmetries 

Asymmetric heat sources 

B-field inhomogeneity: B  1/R(r,q) 

 At equilibrium  motion invariants 

 In turbulent regime  transport 

Open issues: 

Amplitude? 

Phase qCC (sin. vs cos)? 

Frequency? 



Conservation of Potential Vorticity 

Neglecting // dynamics and B-inhomogeneity 

Drives & damping of convective cells 
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[Taylor 1915, 

McIntyre "Festival book" 2013] 

Zonal Flows PV flux Reynolds' force 

(at constant density n) 

Tokamak plasmas: // dynamics + vertical drift  (B inhomogeneity) 

Landau damping 
 compression 

Turbulent nonlinear source 

 poloidal coupling 

Turbulence   ZFs, GAMs      & low freq. Convective Cells 

 (m0,n0) (0,0) (m=01,0) (m=1,0) 



Drives & damping of convective cells 
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~ Symmetric Reynolds' stress  

~ Ballooned Reynolds' stress 

// and vD dynamics 

Matrix form for (m,n)=(01,0) components of gyro-averaged potential 

Convective Cells 

& ZF 

Linear operator 

(Time evol. + advection) 

Nonlinear source 

terms (turbulence) 
[Donnel PPCF 2019(a)]  



Phase dynamics of Convective Cells 

Initial state 

Final state 

Normalized radius r/a 

In-out 

asymmetry 

(|q|<20°) 

Reynolds stress 

ballooning 

Up-down 

asymmetry 

(q=90°20°) 

 Compressibility 

Phase 

of Convective Cells 

 

w
c
 

 t
im

e
 

 

[Donnel PPCF 2019(a)]  
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GYSELA 

simulation 
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GYSELA simulation with Tungsten  

D+W (Z=40), r*=1/190, trace limit (a = 
𝑍2𝑁𝑧

𝑁𝑖
  10−3)  

no torque injection, isotropic heat Source 

Impurity transport weakly affected by CC 

Poloidal asymmetry of nZ … 

Parametrized by d & D: 

D 

w/o CC 

w/ CC 

d w/o CC 

w/ CC 

… Marginally due 

to convective cells 



Recovering neoclassical impur. Flux 
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Convective Cells NOT sufficient to account for Experimental flow asymmetry  

GYSELA asymmetry of nZ 

Generalization: same analysis for non-adiabatic part     of 

 Poloidal asymmetry possible 

even without Convective Cells 

Governs asymmetric pressure 

anisotropy (CGL pressure tensor) 

Effective contribution to impurity 

flux (in ITER relevant low 

collisionality regime) 

Consistent with GYSELA results [Donnel PPCF 2019(b)] 

GZ theoretical:                           & 

contributions essential 

GZ GYSELA 

r/a 0 1 



Basics & critical issues of transport in tokamak plasmas 

Transport & confinement 

Transverse drifts & gyrokinetic framework 

Outline 

|  Page 25 10th Festival de Théorie, Aix-en-Provence, July 2019  CEA  |  Y. Sarazin 

Impact of large scale asymmetries on core impurity transport 

Poloidal asymmetries: experimental evidence & issues 

Turbulence-driven asymmetry… & anisotropy 

Impact on collisional impurity transport 

Impact of asymmetric boundary layer on edge turbulence 

Modelling the unconfined "Scrape-Off Layer" 

The tail & the dog… 



SOL = Scrape-Off Layer: 

Region where magnetic surfaces are open 

Field lines intercept the wall  parallel boundary condition governed 

by different electron-ion mobility      f = Te L/e   (Bohm criterion) 

Modelling the SOL region in GYSELA 
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Ion orbit drift efficiently contribute 

to the establishment of Er well at 

separatrix: 

Er well at separatrix 
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Er strongly negative when 

vDi towards limiter 

The opposite holds when vDi 

away from limiter 

Consistent with L-H power threshold 

lower (~3) in "favorable grad-B drift" 

Top / bottom limiter: governs 

poloidal asymmetry of fluctuations (caveat: still not at steady state) 

[ASDEX NF 1989; Carlstrom PoP 1996; 

Labombard NF 2004; Meyer NF 2006] 

Bottom limiter Top limiter 



Mimic exp. conditions in simulation: TeTi, ne, q, s, n*, Sheat, 75% r* 

 Synthetic diagnostic q=04° 

Highly resolved fast-swept reflectometry measurement of density fluctuation 

profile in Tore Supra (#45511) 

Recovering density fluctuation increase 
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[Clairet RSI 2011] 
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Inclusion of asymmetric SOL-like boundary condition is key:  

No SOL  No fluctuation increase at the edge 

Core-edge-SOL interplay is key! 
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 Beach effect** reveals insufficient 

** Conservation of generalized vorticity W  beach effect 

 Long wavelength approx.: W ~ n
2f  

2f  when n  (edge) 

[Mattor-Diamond PoP 1994; 

Gürcan NF 2013] 
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Initially: weak / No turbulence at the edge 

Then: instability develops at separatrix (Kelvin-Helmholtz in this case) 

 Complex spreading pattern – mostly inward 

Edge instability & turbulence spreading 
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[Kadomtsev 1965; Garbet NF 1994; 

Hahm PoP 2005] 

Final state: edge & core turb. meet  spreading in & out 1 

2 

3 



Drift & limiter  poloidal asymmetry  (+ K-H instability in certain regimes) 

Symmetric & asymmetric poloidal flows  advection of fluctuations 

Transport of turbulent intensity (~ fluctuation entropy) into marginally stable edge: 

Poloidal entrainment & spreading 
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[Mattor PRL 1994; Gürcan NF 2013] 

Radial flux of 

turbulent intensity 

G(r,q,t)-G(r,q,t0) 

Time t1 Time t2 



Core confinement & performance  Gyrokinetic modelling 

Dominant drift wave instabilities 

Complemented by reduced models (large fluctuations & gradients; edge / SOL) 

Conclusions 
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Impurity contamination  Turbulence-driven asymmetries 

Source = turbulent "Reynolds' stress" + ballooning or  flow compression 

Asymmetric flows  are only part of the (not the whole) story 

General theory for pressure asymmetry & anisotropy  consistent with 

GYSELA impurity flux ++ likely important to predict ITER W transport 

Wall heat flux  SOL asymmetry   (limiter configuration – simplified modelling) 

Critical to recover experimental increase of dn/n at the edge 

Poloidal entrainment + inward/outward spreading are keys 



Back-up slides 
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Polarity (cos vs sin) of Convective Cells changes with time scale: 

Intermediate freq.  

 up-down (sin q) asymmetry 

Main drive = transverse compressibility of the flow 

Prediciting phase of Convective Cells 

GYSELA simulation: Polarity of Convective Cells changes from up-down 

 to in-out when turbulence develops 

 Qualitatively consistent with theoretical predictions 

[Donnel PPCF 2019(a)]  
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Low freq.   

 in-out (cos q) asymmetry 

Main drive = ballooned character of Reynolds' stress 



Assuming Lorentzian spectrum of turbulence (Dw = 0.1vTi/R0)  

  Generation of Convective Cells can be estimated 

Fourier decomposition: 

Turbulence   ZFs, GAMs  and low freq. Convective Cells 

 (m0,n0) (0,0) (m=01,0) (m=1,0) 

Prediciting level of Convective Cells 

[Donnel PPCF 2019(a)]  

Zonal Flows 

GAM 

Poloidal 

Convective 

Cells 

T
ra

p
p

in
g
 

GAM 

Modes (m=0,n=0) Modes (m=1,n=0) 

T
ra

p
p

in
g
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(p// - p) cosine contribution (p// - p) sine contribution 

kr rs kr rs 

W
 / 
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Asymmetric pressure anisotropy 
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Turbulence also 

found to generate 

asymmetric pressure 

anisotropy p//p 

 

(p// - p)  much larger 

than predicted by 

neoclassical theory… 

… which in turn drives additional transverse current: 



Ballooning ensured despite mean poloidal flow 

 3D velocity of turbulent eddies: 

 𝑣𝑟(𝑡, 𝑟), 𝑣𝜃 𝑡, 𝑟 , 𝑣𝜑 𝑡, 𝑟  

 Computed by registration of 3D snapshots 

(Minimizing  𝜕𝑡𝜙 + 𝑣 . 𝛻𝜙
2
𝑅𝑑𝜃𝑑𝜑) 

 Parallel motion ensures ballooning 

Ballooning 

recalll 

𝜑 

𝜃 

𝑣𝐸
𝜃 

Parallel 

dynamic 

Resulting 

velocity 𝑣  

−𝑣𝐸
𝜃 
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−𝒒𝒗𝑬
𝜽 

𝒗𝝋 

r/a 

𝒗𝜽 

𝒗𝝋−𝒒𝜽 

Turbulence angular velocities 

[Gillot (2019)]  


