

Phase dynamics in reduced kinetic models

10th Festival de Théorie

Shaokang XU, Vincent Berionni, Renaud Lustrat, Rémi Mattéoli, Pierre MOREL, Özgür GÜRCAN.

Laboratoire de Physique des Plasmas

July 11, 2019

Framework

2 Kinetic shell models

3 kinetic LDM model

Oifferential approximation

6 Reduced model for LH transition

Discussion

Framework

Synergy between reduced approaches and first principle physics

gyrokinetics (5D)

 $\partial_t \mathcal{F} + \{\mathcal{H}, \mathcal{F}\} = \mathcal{S} - \mathcal{C}$

GYSELA simulation (IRFM)

- ★ rigorous description
- ★ numerical cost :

 $\rho_e \longrightarrow \rho_i \longrightarrow a$ still unaccessible

Reduced models:

Transport
$$\partial_t P(r, t) = \cdots$$

+ Zonal Flows $\partial_t \overline{\mathcal{E}}(r, t) = \cdots$
+ turbulence $\partial_t \mathcal{E}(r, t) = \cdots$

 \Rightarrow LH transition

- * Numerous hypothesis
- ⋆ Reasonnable cost

Reduced models can help as long as hypothesis stay under control!

What do "reduced model" mean

Start with your preferred non-linear global equation:

 $\underbrace{\partial_{t} X(\mathbf{r}, \mathbf{v}, t)}_{\text{time evolution}} + \underbrace{\nabla \cdot [\mathbf{u}(\mathbf{r}, t) X(\mathbf{r}, \mathbf{v}, t)]}_{Flux - NonLinear} = \underbrace{S(\mathbf{r})}_{\text{injection}} - \underbrace{D(\mathbf{r}, \mathbf{v}, t)}_{\text{dissipations}}$

Separate time scales:

 \star Long time τ

relaxation time

 $\langle \overline{X} \rangle_t = \overline{X}$ and $\langle \widetilde{X} \rangle_t = 0$

 $\partial_{\tau}\overline{X}(\mathbf{r},\mathbf{v},\tau) + \left\langle \nabla \left[\widetilde{\mathbf{v}_{E}}(\mathbf{r},t)\widetilde{X}(\mathbf{r},\mathbf{v},t) \right] \right\rangle_{t} = S(\mathbf{r})$

 \star Short time t

fluctuations time

$$\partial_t \widetilde{X} + \nabla \cdot \left[\overline{\mathbf{u}} \, \widetilde{X} + \widetilde{\mathbf{v}_E} \, \overline{X}\right] + \nabla \cdot \left[\widetilde{\mathbf{v}_E} \, \widetilde{X}\right] = -D(\mathbf{r}, \mathbf{v}, t)$$

How to describe the **E** × **B** nonlinearity $\widetilde{\mathbf{v}_E} \cdot \nabla \widetilde{X} \propto \mathbf{b} \times \nabla \widetilde{\phi} \cdot \nabla \widetilde{X}$??

* Quasi-linear theory: neglect non-linear term at short times

fast linear response + slow profile evolution

* Shell Models: keep the fast dynamics, truncate convolution

A hierarchy of reduced models

Fourier transform the ${\bf E} \times {\bf B}$ nonlinearity:

$$\mathbf{b} \times \nabla \phi \, . \, \nabla f \longrightarrow \sum_{\mathbf{k} + \mathbf{p} + \mathbf{q} = 0} \left[\mathbf{b} \times \mathbf{p} \, . \, \mathbf{q} \right] \phi_{\mathbf{p}} f_{\mathbf{q}}$$

Shell models:

- * logarithmic k-grid: $k_n = k_0 g^n$
- \star isotropy of the unknowns: $\phi_{\mathbf{p}}=\phi_{\boldsymbol{\rho}},\ \mathbf{f}_{\mathbf{q}}=\mathbf{f}_{q}$
- \star only local interactions: $(p,q) = n \pm 1, n \pm 2$

LDM approach:

- * logarithmic k-grid: $k_n = k_0 g^n$
- \star keep the angular dependence: $\phi_{\mathbf{p}} = \phi\left(\mathbf{p}_n, \theta_j\right) = \phi_n^j$
- \star local interactions with triangle conditions

Spiral chains:

- * spiral k-grid: $\mathbf{k}_n = k_0 g^n e^{in\varphi}$
- $\star\,$ form exact triangles
- $\star\,$ relax the locality contraint $n\pm 1\,,\,n\pm 3$

Kinetic model of trapped particles

Trapped particle motion:

- \star very fast gyromotion Ω_{cs}
- $\star\,$ fast bounce $\omega_{bs} << \Omega_{cs}$
- $\star\,$ slow turbulence $\omega <<\omega_{bs}$

"Bounce-average gyrokinetics":¹ $\alpha \approx$ toroidal angle $\psi \approx$ radius

$$\partial_t F_s + \frac{\Omega_d E}{Z_s} \partial_\alpha F_s - \partial_\psi F_s \, \partial_\alpha \chi_s + \partial_\psi \chi_s \, \partial_\alpha F_s = 0$$

allow to describe TIM / TEM

Separate profiles (F_{0s} supposedly known) and fluctuations (δf_s) + Fourier transform:

$$\partial_t f_{sk} = ik_{\alpha} \partial_{\psi} F_{s0} \chi_{sk} - ik_{\alpha} \frac{\Omega_d E}{Z_s} f_{sk} - \sum_{\mathbf{k}+\mathbf{p}+\mathbf{q}=0} [\mathbf{b} \times \mathbf{p} \cdot \mathbf{q}] \chi_{sp} f_{sq},$$

$$C_k \phi_{\mathbf{k}} = \sum_{\mathbf{a}} Z_s \int_0^{+\infty} \mathcal{J}_{0s} f_{sk} \sqrt{E} dE.$$

¹M. Lesur's talk right after me

s

6/41

 $\mathcal{E}_{f_{s}} = T_{s0} \sum_{\mathbf{k}} \int_{0}^{+\infty} \frac{|f_{sk}|^2}{2F_{s0}} \sqrt{E} dE$

 $\mathcal{E}_{\phi} = \sum_{\mathbf{k}} C_k \frac{|\phi_{\mathbf{k}}|^2}{2}$

Conservations

$$\partial_t f_{sk} = ik_{\alpha} \partial_{\psi} F_{s0} \chi_{sk} - ik_{\alpha} \frac{\Omega_d E}{Z_s} f_{sk} - \sum_{\mathbf{k}+\mathbf{p}+\mathbf{q}=0} [\mathbf{b} \times \mathbf{p} \cdot \mathbf{q}] \chi_{sp} f_{sq} ,$$

$$C_k \phi_{\mathbf{k}} = \sum_s Z_s \int_0^{+\infty} \mathcal{J}_{0s} f_{sk} \sqrt{E} dE .$$

Entropy balance:

$$\partial_t \mathcal{E}_{f_s} = \left(\frac{3}{2}\kappa_{T_s} - \kappa_{ns}\right) T_{s0} \Gamma_s - \kappa_{T_s} \mathcal{Q}_s - \mathcal{D}_s$$

Electrostatic energy balance:

$$\partial_t \mathcal{E}_{\phi} = -\Omega_d \sum_s \mathcal{Q}_s - \mathcal{D}_{\phi}$$

Radial fluxes:

$$\begin{split} \Gamma_{s} &= \sum_{\mathbf{k}} i k_{\alpha} \phi_{\mathbf{k}} \int_{0}^{+\infty} \mathcal{J}_{0s}^{k} f_{s\mathbf{k}}^{\star} \sqrt{E} dE , \\ \mathcal{Q}_{s} &= \sum_{\mathbf{k}} i k_{\alpha} \phi_{\mathbf{k}} \int_{0}^{+\infty} \mathcal{J}_{0s}^{k} f_{s\mathbf{k}}^{\star} E^{3/2} dE . \end{split}$$

TIM and TEM: linear modes

Linear dispersion relation:

$$C_k + \sum_s Z_s \int_0^{+\infty} \frac{\mathcal{J}_{0s}^2 k_\alpha \partial_\psi F_{s0}}{\omega - k_\alpha \Omega_d E/Z_s} \sqrt{E} dE = 0$$

4.5 3.0 1.5 0.0 --1.5-20-3.0-40-4.5 $-60 \underset{-60}{-60}$ -6.0 -40-2020 40 60 k_w $\star \gamma TIM < \gamma TEM$

★ TIM peak at largest scales than TEM

TFM modes:

anisotropy is important at least for linear injection

GOY/Sabra models

GOY²/Sabra³ models:

- * logarithmic k-grid: $k_n = k_0 g^n$
- \star isotropy of the unknowns: $\phi_{\mathbf{p}}=\phi_{\mathcal{P}}\text{, }f_{\mathbf{q}}=f_{q}$
- \star only local interactions: $(p,q) = n \pm 1, n \pm 2$

Sabra version:4

$$\partial_t f_{sn} = \frac{ik_n \chi_{sn} \partial_{\psi} F_{s0} - ik_n \frac{\Omega_d E}{Z_s} f_{sn}^{s,j} + \alpha \frac{k_n^2}{g} \left[g^{-2} \left(\chi_{s,n-2} f_{s,n-1} - \chi_{s,n-1} f_{s,n-2} \right) \right. \\ \left. - \left(\chi_{s,n-1}^* f_{s,n+1} - \chi_{s,n+1} f_{s,n-1}^* \right) + g^2 \left(\chi_{s,n+1}^* f_{s,n+2} - \chi_{s,n+2} f_{s,n+1}^* \right) \right]$$

* source: equilibrium gradients

$$\partial_{\psi}F_{s0}\propto rac{
abla n_s}{n_s}+\left(E-rac{3}{2}
ight)rac{
abla T_s}{T_s}$$

- \star advection with precession frequency Ω_d
- * non-linear couplings: *n* with $\{n \pm 1; n \pm 2\}$

Note the complex conjugates *

GOY version: CC everywhere

L VOV, et al, PRE (1998).

⁴Shaokang Xu, PoP (2018)

²Gledzer, Dokl. Akad. Nauk SSSR (1973), and Yamada, Ohkitani, J. Phys. Soc. Jpn (1987) ³L'vov. et al. PRE (1998).

GOY/Sabra: spectrae⁵

 \star Saturation levels differ from \approx 3 decades ?

 ${\cal E}_{\phi} \sim k^{-4} \ {\cal E}_{f_{
m s}} \sim k^{-1}$

⁵Shaokang Xu, PoP 2018, & R. Lustrat, M2 internship report

GOY/Sabra: time traces⁶

Electrostatic energy \mathcal{E}_{ϕ} :

- * very different time behaviors !
- ★ GOY displays oscillations
- \star Sabra is far more chaotic
- ⋆ only difference: phases

GOY:

 $\partial_t f|_{NL} \propto \chi^{\star}_{s,n-1} f^{\star}_{s,n+1}$ Sabra:

 $\partial_t f|_{NL} \propto \chi^{\star}_{s,n-1} f_{s,n+1}$

 \Rightarrow phase dependence matters!

⁶Shaokang Xu, PoP 2018

12/41

LDM equation⁷

- * logarithmic k-grid: $k_n = k_0 g^n$ + regular θ_k -grid: $\theta^j = j \frac{2\pi}{M_a}$
- \star keep the angular dependence: $\phi_{\mathbf{p}}=\phi\left(p_{n},\theta_{j}\right)=\phi_{n}^{j}$
- \star local interactions: n coupled to $n\pm 1,~n\pm 2$

$$\partial_{t} f_{\ell,n}^{s,j} = i k_{\alpha} \chi_{\ell,n}^{s} \partial_{\psi} F_{eq}^{s} - i k_{\alpha} \frac{E_{\ell} \Omega_{d}}{Z} f_{\ell,n}^{s,j} \\ + \frac{k_{n}^{2} g^{-4}}{2} \sqrt{\mu_{0}} \left[\chi_{\ell,n-2}^{\star j+r_{0}} f_{\ell,n-1}^{\star j-s_{0}} - \chi_{\ell,n-1}^{\star j-s_{0}} f_{\ell,n-2}^{\star j+r_{0}} + \chi_{\ell,n-1}^{\star j+s_{0}} f_{\ell,n-2}^{\star j-r_{0}} - \chi_{\ell,n-2}^{\star j-r_{0}} f_{\ell,n-1}^{\star j+s_{0}} \right] \\ + \frac{k_{n}^{2} g^{-2}}{2} \sqrt{\mu_{0}} \left[\chi_{n-1}^{\star j+\ell_{0}} f_{\ell,n+1}^{\star j-s_{0}} - \chi_{\ell,n+1}^{\star j-s_{0}} f_{\ell,n-1}^{\star j+\ell_{0}} + \chi_{\ell,n+1}^{\star j+s_{0}} f_{\ell,n-1}^{\star j-\ell_{0}} - \chi_{\ell,n-1}^{\star j-\ell_{0}} f_{\ell,n+1}^{\star j+s_{0}} \right] \\ + \frac{k_{n}^{2}}{2} \sqrt{\mu_{0}} \left[\chi_{\ell,n+1}^{\star j+\ell_{0}} f_{\ell,n+2}^{\star j-r_{0}} - \chi_{\ell,n+2}^{\star j-r_{0}} f_{\ell,n+1}^{\star j+\ell_{0}} + \chi_{\ell,n+2}^{\star j-\ell_{0}} f_{\ell,n+1}^{\star j-\ell_{0}} - \chi_{\ell,n+1}^{\star j-\ell_{0}} f_{\ell,n+2}^{\star j+s_{0}} \right]$$

 \star source: equilibrium gradients

$$\partial_{\psi}F_{s0}\propto rac{
abla n_s}{n_s}+\left(E-rac{3}{2}
ight)rac{
abla T_s}{T_s}$$

- $\star\,$ advection with precession frequency Ω_d
- * non linear couplings *n* with $\{n \pm 1; n \pm 2\}$, angular shifts $\pm r_0, \pm s_0, \pm \ell_0$

⁷Shaokang Xu, PoP 2018

LDM simulations

- * LDM : $\phi(k_n, \theta_j)$
- streamers anisotropy (TEM dominate)
- time trace \u03c6(t)
 predator (ZF) vs prey (turb.)
 intermittent, bursts ?
 ZF with local couplings ?

LDM simulations

k-spectrae:

$$\star ~ \mathcal{E}_{\phi} \sim k^{-4}$$

*
$$\mathcal{E}_{f_s} \sim k^{-1} - k^{-2}$$

- \star do not depend much on model chosen
- $\star\,$ do not depend much on phase dynamics

Origin of these slopes ?

Oiscussion

Differential approximation: Motivation

 $\star~\mathbf{E}\times\mathbf{B}$ nonlinearity:

$$\left.\frac{\partial f}{\partial t}\right|_{\text{NL}} = \sum_{\mathbf{k}+\mathbf{p}+\mathbf{q}=\mathbf{0}} \left[\mathbf{z}\times\mathbf{p}\right] \cdot \mathbf{q} \ \chi_{\mathbf{p}}f_{\mathbf{q}}$$

universal in plasmas

same form in 2D fluid turbulence (stream function ψ)

* Conserved quantities:

$$\mathcal{E}_f \propto f^2 \,, \quad \mathcal{E}_\phi \propto \mathcal{C}_k \phi^2 \,.$$

* Find a model allowing to write energies spectral budgets:

$$\begin{array}{lll} \partial_t \mathcal{E}_k^{f_s} + \partial_k \Pi_k^{f_s} &=& \mathcal{G}_k^{f_s} - \mathcal{D}_k^{f_s} \\ \partial_t \mathcal{E}_k^{\phi} + \partial_k \Pi_k^{\phi} &=& \mathcal{G}_k^{\phi} - \mathcal{D}_k^{\phi} \end{array}$$

 $\begin{aligned} \Pi^{f}_{k}, \ \Pi^{\phi}_{k} \ \text{are spectral energy fluxes} \\ \text{play a key role in turbulence} \\ & \text{approximation for } \Pi^{f,\phi}_{k} \end{aligned}$

Differential approximation: algebra

Assume:

$$k_n = k_0 g^n = k_0 (1+\epsilon)^n ,$$

with ϵ small, at fourth order:

$$\begin{aligned} k_{n+1} &= k_n + \epsilon k_n \,, \\ f_{n+1} &\approx f_n + \epsilon k_n \partial_k f_n + \frac{\epsilon^2 k_n^2}{2} \partial_k^2 f_n + \frac{\epsilon^3 k_n^3}{6} \partial_k^3 f_n + \frac{\epsilon^4 k_n^4}{24} \partial_k^4 f_n \,, \\ \dots & \dots \end{aligned}$$

Plug into GOY/Sabra truncation $n \pm 1$, $n \pm 2$:

$$\begin{split} \mathbf{N} &\approx & \alpha \frac{k}{\chi} \, \partial_k \left[k^2 \chi^{3/2} \, \partial_k \left(k^2 \chi^{3/2} \partial_k \frac{f}{\chi} \right) \right] \\ &\approx & -\alpha \frac{k}{f} \, \partial_k \left[k^2 f^{3/2} \, \partial_k \left(k^2 f^{3/2} \partial_k \frac{\chi}{f} \right) \right] \,, \end{split}$$

* Antisymetric: $N[f, \chi] = -N[\chi, f]$

Poisson bracket

- \star Construct energies: $N imes (\chi/k)$ or N imes (f/k)
- $\star\,$ no phase involved: χ and f are amplitudes

Passive scalar equations

$$\partial_t \nabla^2 \phi + \mathbf{z} \times \nabla \phi \cdot \nabla \nabla^2 \phi = \mathbf{0},,$$

$$\partial_t \mathbf{n} + \mathbf{z} \times \nabla \phi \cdot \nabla \mathbf{n} = \mathbf{0}.$$

Differential approximation:

i

$$\partial_t k^2 \phi = 2\alpha \frac{k}{\phi} \partial_k \left[k^2 \phi^{3/2} \partial_k \left(k^3 \phi^{3/2} \right) \right] ,$$

$$\partial_t n = -\alpha \frac{k}{n} \partial_k \left[k^2 n^{3/2} \partial_k \left(k^2 n^{3/2} \partial_k \frac{\phi}{n} \right) \right] .$$

Energy formulation:

with injection ${\mathcal I}$ and dissipations $\nu_{s}^{\phi,n}\text{, }\nu_{L}^{\phi,n}$

$$\partial_{t} \mathcal{E}_{\phi,k} = 2\alpha \partial_{k} \left[k^{5/4} \mathcal{E}_{\phi,k}^{3/4} \partial_{k} \left(k^{9/4} \mathcal{E}_{\phi,k}^{3/4} \right) \right] \\ + \mathcal{I}_{\phi,k} - \nu_{s}^{\phi} k^{4} \mathcal{E}_{\phi,k}^{1/2} - \nu_{L}^{\phi} k^{-6} \mathcal{E}_{\phi,k} , \qquad (1) \\ \partial_{t} \mathcal{E}_{n,k} = -\alpha \partial_{k} \left[\frac{\mathcal{E}_{n,k}^{3/4}}{k^{-11/4}} \partial_{k} \left(\frac{\mathcal{E}_{n,k}^{3/4}}{k^{-11/4}} \partial_{k} \frac{\mathcal{E}_{\phi,k}^{1/2}}{k^{2} \mathcal{E}_{n,k}^{1/2}} \right) \right] \\ + \mathcal{I}_{n,k} - \nu_{s}^{n} k^{4} \mathcal{E}_{n,k} - \nu_{L}^{n} k^{-6} \mathcal{E}_{n,k} , \qquad (2)$$

Passive scalar: spectrae

★ Vorticity stationnarity:

$$\partial_{k}\left[k^{5/4}\mathcal{E}_{\phi,k}^{3/4}\partial_{k}\left(k^{9/4}\mathcal{E}_{\phi,k}^{3/4}\right)\right]\approx0$$

$$\mathcal{E}_{\phi} \sim k^{-3}$$
 or $\mathcal{E}_{\phi} \sim k^{-5/3}$

recover Kraichnan-Kolmogorov

★ Note:

$$\partial_k \left[k^{5/4} \mathcal{E}_{\phi,k}^{3/4} \partial_k \left(k^{9/4} \mathcal{E}_{\phi,k}^{3/4} \right) \right] = \partial_k \frac{\partial_k \left(k^{9/2} \mathcal{E}_{\phi}^{3/2} \right)}{k} \,,$$

recover the Leith model

★ Passive scalar stationnarity:

$$\partial_{k}\left[k^{11/4}\mathcal{E}_{n,k}^{3/4}\partial_{k}\left(k^{11/4}\mathcal{E}_{n,k}^{3/4}\partial_{k}\frac{\mathcal{E}_{\phi,k}^{1/2}}{k\mathcal{E}_{n,k}^{1/2}}\right)\right]\approx0$$

Gives six different slopes:

$$\mathcal{E}_{n,k} \sim \left\{ k^{-5}; \, k^{-11/3}; \, k^{-5/3}; \, k^{-1}; \, k^{1/3}; \, k^3 \right\}$$

Signs of the fluxes

Remind the defnition of the fluxes:

$$\begin{array}{lll} \partial_{t}\mathcal{E}_{\phi} & = & -\partial_{k}\Pi_{k}^{\phi} \propto \partial_{k} \frac{\partial_{k} \left(k^{9/2} \mathcal{E}_{\phi}^{3/2}\right)}{k} \,, \\ \\ \partial_{t}\mathcal{E}_{n} & = & -\partial_{k}\Pi_{k}^{n} \propto -\partial_{k} \left[k^{11/4} \mathcal{E}_{n}^{3/4} \partial_{k} \left(k^{11/4} \mathcal{E}_{n}^{3/4} \partial_{k} \sqrt{\frac{\mathcal{E}_{\phi}}{k^{2} \mathcal{E}_{n}}}\right)\right] \end{array}$$

Constant, nonzero, fluxes correspond to :

$$\begin{array}{l} \star \ \Pi_k^{\phi} < 0 \ \text{for} \ \mathcal{E}_{\phi} \sim k^{-5/3} \\ \\ \text{Inverse energy cascade} \\ \star \ \Pi_k^n > 0 \ \text{for} \ \mathcal{E}_{\phi} \sim k^{-5/3} \ \text{and} \ \mathcal{E}_n \sim k^{-5/3} \\ \\ \star \ \Pi_k^n > 0 \ \text{for} \ \mathcal{E}_{\phi} \sim k^{-3} \ \text{and} \ \mathcal{E}_n \sim k^{-1} \end{array}$$

Direct enstrophy cascade (in the case $n = k^2 \phi$)

Spectral zoo of the passive scalar

Vary injection location:

- $\star \ \mathcal{I}_{\phi}$: inject vorticity at $k_0^{\phi} = 1.0$
- * \mathcal{I}_n : inject passive scalar at $k_0^n =$ $10^{\{-2; -1; 0; 1; 2\}}$

 \mathcal{E}_n

-11/3

-5/3

1/3

-5

 $^{-1}$

3

 Π_k^{ϕ}

_

_

0

0

 \mathcal{E}_{ϕ}

-5/3

-5/3

-5/3

-3

-3

-3

Oifferential approximation

Discussion

Shell model coupled to radial profiles⁸

* Transport equations:

density n(r, t), pressure P(r, t)

$$\partial_t n = \nabla \cdot \left[(D_{neo} + D_{turb} \mathcal{E}) \nabla n \right] + S_n(r)$$

$$\partial_t P = \nabla \cdot \left[(\chi_{neo} + \chi_{turb} \mathcal{E}) \nabla P \right] + S_Q(r)$$

★ Turbulence evolution:

intensity $\mathcal{E}(r,t) = \sum_n \phi_n \phi_n^{\star}$

$$\begin{array}{lll} \partial_t \phi_n & = & F_n - \nu_L k_n^{-6} \phi_n - \nu_s k_n^4 \phi_n + D_{\mathcal{E}} \nabla^2 \phi_n \\ & & -\overline{\alpha} \frac{q k_n \overline{\phi}^\star}{1 + k_n^2} \left[g \left(1 + g^2 k_n^2 - q^2 \right) \phi_{n+1}^\star - \left(1 + \frac{k_n^2}{g^2} - q^2 \right) \phi_{n-1}^\star \right] \\ & & + \alpha \frac{k_n^4 \left(g^2 - 1 \right)}{1 + k_n^2} \left[g^{-7} \phi_{n-2}^\star \phi_{n-1}^\star - \left(g^2 + 1 \right) g^{-3} \phi_{n-1}^\star \phi_{n+1}^\star + g^3 \phi_{n+1}^\star \phi_{n+2}^\star \right] \end{array}$$

★ Mean flow evolution:

 $\overline{\phi}(r,t)$ at scale q

$$\partial_t \overline{\phi} = \overline{\alpha} \sum_n \frac{k_n^3 g\left(g^2 - 1\right)}{q} \phi_n^* \phi_{n+1}^* - \nu_F \left[\overline{\phi} - \phi_{V'_E}(r, t)\right]$$

radial force balance: $\phi_{V_E'} = \frac{\eta}{q^2} \nabla P \cdot \nabla n$

⁸V. Berionni, PoP 2017, see also Miki and Diamond for numerous works on similar system

25/41

Shell model and LH transition

26/41 Pierre MOREL - LPP

1 Framework

- 2 Kinetic shell models
- 3 kinetic LDM model
- Oifferential approximation
- 6 Reduced model for LH transition

6 Discussion

Discussion - TODO list

* hierarchy of reduced models available

shell \longrightarrow spiral \longrightarrow LDM differential approximation

 \star shell models describe LH transition

incorrect growth rate information (R. Singh and R. Heinonen for similar dicussion) miss phase information

* LDM model more accurate

key ingredient lacking is the nonlocal coupling (in *k*-space)

- \star an UFO: differential approximation
- $\star\,$ candidates for "sub-grid" models ?

deserves adaptation to plasmas

1 Framework

2 Kinetic shell models

3 kinetic LDM model

Oifferential approximation

5 Reduced model for LH transition

Discussion

Back to TEM+TIM system : phase representation

We have to solve :

$$\begin{array}{lll} \partial_t f_{s\mathbf{k}} &=& ik_{\alpha} \partial_{\psi} F_{s0} \, \mathcal{J}_{0s} \phi_{\mathbf{k}} - ik_{\alpha} \frac{\Omega_d E}{Z_s} f_{s,\mathbf{k}} - \sum_{\mathbf{k}+\mathbf{p}+\mathbf{q}=0} \left[\mathbf{z} \times \mathbf{p} \cdot \mathbf{q}\right] \mathcal{J}_{0s} \phi_{\mathbf{p}}^{\star} f_{s\mathbf{q}}^{\star} \,, \\ C_{\mathbf{k}} \phi_{\mathbf{k}} &=& \sum_{s} Z_s \int_{0}^{+\infty} \mathcal{J}_{0s} f_{s\mathbf{k}} \sqrt{E} dE \,. \end{array}$$

Decompose the distribution function into phase/amplitude: $f_{sk} = |f_{sk}| e^{i\varphi_k}$

$$\begin{array}{lcl} \partial_t \left| f_{\mathsf{sk}} \right| &=& -k_\alpha \partial_\psi F_{\mathsf{s0}} \Im \left[\mathcal{J}_{0\mathsf{s}} \phi_{\mathsf{k}} \, e^{-i\varphi_{\mathsf{k}}} \right] - \sum_{\mathsf{k}+\mathsf{p}+\mathsf{q}} \left[\mathsf{z} \times \mathsf{p} \cdot \mathsf{q} \right] \Re \left[\mathcal{J}_{0\mathsf{s}} \phi_{\mathsf{p}}^{\star} \left| f_{\mathsf{sq}} \right| \, e^{-i\left(\varphi_{\mathsf{q}}+\varphi_{\mathsf{k}}\right)} \right] \,, \\ \partial_t \varphi_{\mathsf{f}_{\mathsf{s}}\mathsf{k}} &=& k_\alpha \partial_\psi F_{\mathsf{s0}} \frac{\Re \left[\mathcal{J}_{0\mathsf{s}} \phi_{\mathsf{k}} \, e^{-i\varphi_{\mathsf{k}}} \right]}{|f_{\mathsf{sk}}|} - k_\alpha \frac{\Omega_d E}{Z_{\mathsf{s}}} \\ &- \sum_{\mathsf{k}+\mathsf{p}+\mathsf{q}=0} \left[\mathsf{z} \times \mathsf{p} \cdot \mathsf{q} \right] \Im \left[\mathcal{J}_{0\mathsf{s}} \phi_{\mathsf{p}}^{\star} \, e^{-i\left(\varphi_{\mathsf{q}}+\varphi_{\mathsf{k}}\right)} \right] \frac{|f_{\mathsf{sq}}|}{|f_{\mathsf{sk}}|} \,, \\ C_{\mathsf{k}} \phi_{\mathsf{k}} &=& \sum_{\mathsf{s}} Z_{\mathsf{s}} \int_{0}^{+\infty} \mathcal{J}_{0\mathsf{s}} \left| f_{\mathsf{sk}} \right| \, e^{i\varphi_{\mathsf{k}}} \,. \end{array}$$

$$\begin{array}{lll} \partial_t \left| f_{\mathsf{sk}} \right| & = & -k_\alpha \partial_\psi F_{\mathsf{s0}} \Im \left[\mathcal{J}_{\mathsf{0s}} \phi_{\mathsf{k}} e^{-i\varphi_{\mathsf{k}}} \right] - \sum_{\mathsf{k}+\mathsf{p}+\mathsf{q}} \left[\mathsf{z} \times \mathsf{p} \cdot \mathsf{q} \right] \Re \left[\mathcal{J}_{\mathsf{0s}} \phi_{\mathsf{p}}^{\star} \left| f_{\mathsf{sq}} \right| e^{-i\left(\varphi_{\mathsf{q}}+\varphi_{\mathsf{k}}\right)} \right] , \\ \partial_t \varphi_{\mathsf{k}} & = & -k_\alpha \frac{\Omega_d E}{Z_{\mathsf{s}}} + k_\alpha \partial_\psi F_{\mathsf{s0}} \frac{\Re \left[\mathcal{J}_{\mathsf{0s}} \phi_{\mathsf{k}} e^{-i\varphi_{\mathsf{k}}} \right]}{|f_{\mathsf{sk}}|} \\ & & - \sum_{\mathsf{k}+\mathsf{p}+\mathsf{q}=\mathsf{0}} \left[\mathsf{z} \times \mathsf{p} \cdot \mathsf{q} \right] \Im \left[\mathcal{J}_{\mathsf{0s}} \phi_{\mathsf{p}}^{\star} e^{-i\left(\varphi_{\mathsf{q}}+\varphi_{\mathsf{k}}\right)} \right] \frac{|f_{\mathsf{sq}}|}{|f_{\mathsf{sk}}|} , \\ C_{\mathsf{k}} \phi_{\mathsf{k}} & = & \sum_{\mathsf{s}} Z_{\mathsf{s}} \int_{\mathsf{0}}^{+\infty} \mathcal{J}_{\mathsf{0s}} \left| f_{\mathsf{sk}} \right| e^{i\varphi_{\mathsf{k}}} \left(= C_{\mathsf{k}} \left| \phi_{\mathsf{k}} \right| e^{i\varphi_{\mathsf{k}}} \right) . \end{array}$$

* Injection wrt amplitude: Iinear, due to equilibrium gradients $\propto \partial_{\psi} F_{s0}$ contains the radial fluxes of heat and particles anisotropy: $k_{\alpha} = k \sin \theta_k$ phase relationship: $\Im \left[J_{0s} \phi_{\mathbf{k}} e^{-i\varphi_k} \right] \propto \sin \left(\overline{\varphi_{\mathbf{k}}} - \varphi_{\mathbf{k}}\right)$ \Rightarrow null for $\overline{\varphi_{\mathbf{k}}} - \varphi_{\mathbf{k}} = 0$ correspond to stable drift waves

$$\begin{aligned} \partial_t \left| f_{sk} \right| &= -k_\alpha \partial_\psi F_{s0} \Im \left[\mathcal{J}_{0s} \phi_k e^{-i\varphi_k} \right] - \sum_{k+p+q} \left[\mathbf{z} \times \mathbf{p} \cdot \mathbf{q} \right] \Re \left[\mathcal{J}_{0s} \phi_p^* \left| f_{sq} \right| e^{-i\left(\varphi_q + \varphi_k\right)} \right], \\ \partial_t \varphi_k &= -k_\alpha \frac{\Omega_d E}{Z_s} + k_\alpha \partial_\psi F_{s0} \frac{\Re \left[\mathcal{J}_{0s} \phi_k e^{-i\varphi_k} \right]}{|f_{sk}|} \\ &- \sum_{k+p+q=0} \left[\mathbf{z} \times \mathbf{p} \cdot \mathbf{q} \right] \Im \left[\mathcal{J}_{0s} \phi_p^* e^{-i\left(\varphi_q + \varphi_k\right)} \right] \frac{|f_{sq}|}{|f_{sk}|}, \\ C_k \phi_k &= \sum_s Z_s \int_0^{+\infty} \mathcal{J}_{0s} \left| f_{sk} \right| e^{i\varphi_k} \left(= C_k \left| \phi_k \right| e^{i\overline{\varphi_k}} \right). \end{aligned}$$

- ★ Injection wrt amplitude
- * Nonlinear transfers: triangles $\mathbf{k} + \mathbf{p} + \mathbf{q} = 0$ phase relationship: $\Re \left[\mathcal{J}_{0s} \phi_{\mathbf{p}}^{\star} | f_{sq} | e^{-i(\varphi_{\mathbf{q}} + \varphi_{\mathbf{k}})} \right] \propto \cos (\varphi_{\mathbf{k}} + \varphi_{\mathbf{q}} + \overline{\varphi_{\mathbf{p}}})$ max for $\varphi_{\mathbf{k}} + \overline{\varphi_{\mathbf{p}}} + \varphi_{\mathbf{q}} = 0$

$$\begin{aligned} \partial_{t} \left| f_{sk} \right| &= -k_{\alpha} \partial_{\psi} F_{s0} \Im \left[\mathcal{J}_{0s} \phi_{k} e^{-i\varphi_{k}} \right] - \sum_{k+p+q} \left[z \times p \cdot q \right] \Re \left[\mathcal{J}_{0s} \phi_{p}^{\star} \left| f_{sq} \right| e^{-i\left(\varphi_{q}+\varphi_{k}\right)} \right], \\ \partial_{t} \varphi_{k} &= -k_{\alpha} \frac{\Omega_{d} E}{Z_{s}} + k_{\alpha} \partial_{\psi} F_{s0} \frac{\Re \left[\mathcal{J}_{0s} \phi_{k} e^{-i\varphi_{k}} \right]}{\left| f_{sk} \right|} \\ &- \sum_{k+p+q=0} \left[z \times p \cdot q \right] \Im \left[\mathcal{J}_{0s} \phi_{p}^{\star} e^{-i\left(\varphi_{q}+\varphi_{k}\right)} \right] \frac{\left| f_{sq} \right|}{\left| f_{sk} \right|}, \\ C_{k} \phi_{k} &= \sum_{s} Z_{s} \int_{0}^{+\infty} \mathcal{J}_{0s} \left| f_{sk} \right| e^{i\varphi_{k}} \left(= C_{k} \left| \phi_{k} \right| e^{i\overline{\varphi_{k}}} \right). \end{aligned}$$

- ★ Injection wrt amplitude
- ***** Nonlinear transfers
- * ballistic phase:

 $\propto Z_s$ linear growth/decrease of phase $\propto k_{lpha}, E$

$$\begin{aligned} \partial_{t} \left| f_{sk} \right| &= -k_{\alpha} \partial_{\psi} F_{s0} \Im \left[\mathcal{J}_{0s} \phi_{k} e^{-i\varphi_{k}} \right] - \sum_{k+p+q} \left[z \times p \cdot q \right] \Re \left[\mathcal{J}_{0s} \phi_{p}^{*} \left| f_{sq} \right| e^{-i\left(\varphi_{q}+\varphi_{k}\right)} \right], \\ \partial_{t} \varphi_{k} &= -k_{\alpha} \frac{\Omega_{d} E}{Z_{s}} + k_{\alpha} \partial_{\psi} F_{s0} \frac{\Re \left[\mathcal{J}_{0s} \phi_{k} e^{-i\varphi_{k}} \right]}{\left| f_{sk} \right|} \\ &- \sum_{k+p+q=0} \left[z \times p \cdot q \right] \Im \left[\mathcal{J}_{0s} \phi_{p}^{*} e^{-i\left(\varphi_{q}+\varphi_{k}\right)} \right] \frac{\left| f_{sq} \right|}{\left| f_{sk} \right|}, \\ C_{k} \phi_{k} &= \sum_{s} Z_{s} \int_{0}^{+\infty} \mathcal{J}_{0s} \left| f_{sk} \right| e^{i\varphi_{k}} \left(= C_{k} \left| \phi_{k} \right| e^{i\overline{\varphi_{k}}} \right). \end{aligned}$$

- * Injection wrt amplitude
- * Nonlinear transfers
- * ballistic phase
- ★ phase coupling wrt energy E:
 - background gradients $\propto \partial_{\psi} F_{s0}$ anisotropy: $\propto k_{\alpha} = k \sin \theta_k$ phase relationship: $\Re \left[J_{0s} \phi_{\mathbf{k}} e^{-i\varphi_{\mathbf{k}}} \right] \propto \cos \left(\overline{\varphi_{\mathbf{k}}} - \varphi_{\mathbf{k}} \right)$ \Rightarrow max for $\overline{\varphi_{\mathbf{k}}} - \varphi_{\mathbf{k}} = 0$

Kuramoto model:
$$d_t \theta_i = \omega_i + Kr \sin(\psi - \theta_i)$$

34/41

Pierre MOREL - LPP

$$\begin{array}{lcl} \partial_{t}\left|f_{sk}\right| &=& -k_{\alpha}\partial_{\psi}F_{s0}\Im\left[\mathcal{J}_{0s}\phi_{k}e^{-i\varphi_{k}}\right] - \sum_{k+p+q}\left[\mathbf{z}\times\mathbf{p}\cdot\mathbf{q}\right]\Re\left[\mathcal{J}_{0s}\phi_{p}^{\star}\left|f_{sq}\right|e^{-i\left(\varphi_{q}+\varphi_{k}\right)}\right],\\ \partial_{t}\varphi_{k} &=& -k_{\alpha}\frac{\Omega_{d}E}{Z_{s}} + k_{\alpha}\partial_{\psi}F_{s0}\frac{\Re\left[\mathcal{J}_{0s}\phi_{k}e^{-i\varphi_{k}}\right]}{|f_{sk}|}\\ && -\sum_{k+p+q=0}\left[\mathbf{z}\times\mathbf{p}\cdot\mathbf{q}\right]\Im\left[\mathcal{J}_{0s}\phi_{p}^{\star}e^{-i\left(\varphi_{q}+\varphi_{k}\right)}\right]\frac{|f_{sq}|}{|f_{sk}|},\\ C_{k}\phi_{k} &=& \sum_{s}Z_{s}\int_{0}^{+\infty}\mathcal{J}_{0s}\left|f_{sk}\right|e^{i\varphi_{k}}\left(=C_{k}\left|\phi_{k}\right|e^{i\overline{\varphi_{k}}}\right). \end{array}$$

- ★ Injection wrt amplitude
- * Nonlinear transfers
- \star ballistic phase
- $\star\,$ phase coupling wrt energy E
- \star phase coupling wrt k:

triangles $\mathbf{k} + \mathbf{p} + \mathbf{q} = 0$ $\Im \left[\mathcal{J}_{0s} \phi_{\mathbf{p}}^{\star} e^{-i(\varphi_{\mathbf{q}} + \varphi_{\mathbf{k}})} \right] \propto \sin \left(\varphi_{\mathbf{k}} + \overline{\varphi_{\mathbf{p}}} + \varphi_{\mathbf{q}} \right)$

 \Rightarrow minimal for maximal nonlinear transfers

Phase dynamics in TEM

TEM driven simulation + phase representation

Pierre MOREL - LPP

36/41

Phase dynamics in TEM

t

39/41 Pierre MOREL - LPE

Phase dynamics in TEM

Perspectives

* scalaire passif :

solution analytique zones dissipatives ? avec $\mathcal{E}_{\phi} \propto k^{-3}$

$$\begin{aligned} Pr << 1: \ \mathcal{E}_n \ \text{suramorti} & \text{ave} \\ d_k \left[k^{11/4} \mathcal{E}_n^{3/4} \partial_k \left(k^{11/4} \mathcal{E}_n^{3/4} d_k \sqrt{\frac{k^{-3}}{k^2 \mathcal{E}_n}} \right) \right] + \nu_s^n k^2 \mathcal{E}_n = 0 \end{aligned}$$

$$Pr >> 1$$
 : \mathcal{E}_{ϕ} suramorti

$$d_k \left[\frac{d_k \left(k^{17/2} \mathcal{E}_{\phi}^{3/2} \right)}{k} \right] - \nu_s^{\phi} k^4 \mathcal{E}_{\phi} = 0$$

* anisotropie : en tenir compte en posant :

$$p = k (1 + \epsilon_p)$$

$$q = k (1 + \epsilon_q)$$

$$\Rightarrow \qquad \qquad \text{développement limité à deux variables } (\epsilon_p, \epsilon_q)$$

$$\Rightarrow \qquad \qquad \text{déformation des angles } \alpha_p = \arccos \frac{p^2 + k^2 - q^2}{2pk}$$

$$= \arccos \frac{1 + \epsilon_p (2 + \epsilon_p) - \epsilon_q (2 + \epsilon_q)}{2 + 2\epsilon_p}$$

* cas gyrocinétique : gyromoyennes ??

41/41 Pierre MOREL