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The Sun’s magnetic field
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Solar magnetic field viewed in the corona
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Solar dynamo theory

Origins of dynamo theory (and arguably MHD itself) can be traced to the question
posed by Joseph Larmor (1919):

How could a rotating body such as the Sun become a magnet?

Answer: dynamo action.

However, what is still an unanswered question:

How could a rotating body such as the Sun become a large-scale magnet?
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Mean field models of MHD turbulence

The problem: Given well-documented difficulties with standard kinematic mean field
dynamo theory, one can instead examine long wavelength instabilities of a fully
developed, small-scale MHD state.

Method: Start with homogeneous stationary MHD turbulent state. Perturb basic
state with small imposed symmetry-breaking terms.

Calculate linearised response to perturbation and form mean coefficients governing
slow evolution of the mean quantities.

But does this produce sensible answers?
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Formal calculation of mean field coefficients
Starting point is a forced symmetric MHD state with small-scale velocity U(x , t) and
small-scale magnetic field B(x , t). This could be the result of a small-scale dynamo or
via forcing in the induction equation.
The governing equations are those of incompressible MHD:

∂U
∂t

+ U · ∇U = −∇P + B · ∇B + Re−1∇2U + F ,

∂B
∂t

+ U · ∇B = B · ∇U + Rm−1∇2B,

∇ ·U = 0, ∇ · B = 0.

Here F is some forcing function, Re and Rm are the fluid and magnetic Reynolds
numbers.
We assume that F , Re and Rm are such that there is no mean field or flow.

Now suppose that the system is perturbed by a small perturbation u, b. The linearised
perturbation equations are:

∂u
∂t

+ U · ∇u + u · ∇U = −∇p + B · ∇b + b · ∇B + Re−1∇2u,

∂b
∂t

+ U · ∇b + u · ∇B = B · ∇u + b · ∇U + Rm−1∇2b,

∇ · u = 0, ∇ · b = 0.
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Formal calculation of mean field coefficients
Decompose the disturbance flow and field into mean and fluctuating components.
Write u = 〈u〉+ u′, etc., where 〈 〉 denotes an average over intermediate spatial scales.

The mean equations are:

∂〈u〉
∂t

+
∂

∂xj
〈Uju′ + u′jU〉 = −∇〈P〉+

∂

∂xj
〈Bjb′ + b′jB〉+ Re−1∇2〈u〉,

∂〈b〉
∂t

+ 〈U · ∇b′〉+ 〈u′ · ∇B〉 = 〈B · ∇u′〉+ 〈b′ · ∇U〉+ Rm−1∇2〈b〉.

And the fluctuating components (assuming 〈u〉 and 〈b〉 are uniform to leading order)
are described by:

∂u′

∂t
+
(
U · ∇u′ + u′ · ∇U

)′
+ 〈u〉 · ∇U = −∇P′ +

(
B · ∇b′ + b′ · ∇B

)′
+ 〈b〉 · ∇B + Re−1∇2u′,

∂b′

∂t
+
(
U · ∇b′ + u′ · ∇B

)′
+ 〈u〉 · ∇B =

(
B · ∇u′ + b′ · ∇U

)′
+ 〈b〉 · ∇U + Rm−1∇2b′.

We are interested in the evolution of the mean fields 〈u〉, 〈b〉. If we could solve
explicitly for the fluctuating fields, in terms of the mean fields, then we would have a
closed system.
But typically this is not the case.
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Mean field ansatz

However, the linearity of the fluctuating equations in the mean fields allows us to write
the mean field equations in the form

∂〈ui 〉
∂t

+
∂

∂xj

(
ΓU
ijl 〈ul 〉+ ΓB

ijl 〈bl 〉
)

= −
∂

∂xi
〈p〉+ Re−1∇2〈ui 〉,

∂〈bi 〉
∂t

= εijk
∂

∂xj

(
αB
kl 〈bl 〉+ αU

kl 〈ul 〉
)

+ Rm−1∇2〈bi 〉.

Hence the evolution of the mean flow and magnetic field is governed by four tensors
(or pseudo-tensors): ΓU , ΓB , αU , αB . These tensors depend on the statistics of the
basic state flow and field (U,B).

The pseudo-tensor αB is the counterpart of the α-effect of kinematic mean field
MHD, whereas the tensor ΓU is the counterpart of the AKA-effect of Frisch et al. The
properties of the other two tensors are relatively unexplored.

Two cases where progress can be made:

(i) Small Rm. No small-scale dynamo, so need forcing in induction equation
(Courvoisier, H + Proctor 2010 Astron. Nachr.).

(ii) Short sudden turbulence (Small Strouhal number).
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Short sudden approximation
Perturbations determined by:

u′ = τ(〈b〉 · ∇B − 〈u〉 · ∇U), b′ = τ(〈b〉 · ∇U − 〈u〉 · ∇B).

First it should be noted that ΓU vanishes under this approximation. Substituting for u′
and b′ gives

αB
il = τεipq

(
Up
∂Uq

∂xl
− Bp

∂Bq

∂xl

)
,

αU
il = −2τεimnγmnl ,

ΓB
ijl = 2τ(γijl + γjil ),

where

γijl =

〈
Ui
∂Bj

∂Xl

〉
.

The expression for α(1), which first appeared in Pouquet, Frisch & Léorat (1976),
extends the classical α-effect from hydrodynamic to MHD basic states.

Since ΓB is symmetric in its first two arguments, it will vanish if the statistics of the
basic state are isotropic.

Coefficients of γ are a priori almost unconstrained, though since 〈u〉, 〈b〉 are
solenoidal we do have γiji = γijj = 0.
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Possible new instability mechanism

Even if the α-effect vanishes, it still seems that there can be a long-wavelength
instability induced by the coupling terms.

Seek solutions proportional to e iKZ+ST , so that 〈u〉3 = 〈b〉3 = 0.

Gives coupled two-dimensional algebraic equations (where G
(1)
ij = γi3j , G

(2)
ij = γ3ij )

S〈u〉 = 2iτK(G (1) + G (2))〈b〉, S〈b〉 = −2iτK(G (1) − G (2))〈u〉,

and so S2 is an eigenvalue of the matrix

4τ2K2
(

(G (1) + G (2))(G (1) − G (2))
)
ij
.

It would appear to be straightforward to find examples for which the eigenvalue S2 is
positive, implying instability of the basic state.

This would be a new generic mechanism for long wavelength instability, relying on
coupling between the mean momentum and induction equations and on anisotropy in
the basic flow statistics.
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Implementation

General idea:

Calculate the coefficients of the α and Γ tensors by imposing kinematic and uniform
fields and flows and solving the fluctuation equations.

Armed with the results of this small-scale calculation, we are in a position to
determine the evolution of the mean fields.

But does it always work?
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Cases where it works well

Suppose the basic state flow and field depend only on x , y and t (e.g. from a forced
flow with a background field). This is an extension of the classic work of G.O. Roberts
(1970).
Then one can consider perturbations of the form

u = û(x , y , t) exp(ikz), b = b̂(x , y , t) exp(ikz).

Here the long direction is in z, so k � 1. Averages are taken over the xy -plane, so we
can perform two-dimensional calculations to tell us about the growth of long
wavelength three-dimensional perturbations.
We have considered two specific forcings, to drive simple (known) flows when there is
no magnetic field (Courvoisier, H & Proctor 2010 Proc. R. Soc.):

U0 = ∇× (ψẑ ) + w ẑ ≡ UH + w ẑ .

1. The AKA forcing (Frisch, She & Sulem 1987)

F =
(
Re−1

√
2 cos (y + Re−1t),Re−1

√
2 cos (x − Re−1t),Fx + Fy

)
.

2. The MW+ flow (Otani 1993)

ψ = −w =
(
cos x cos2 t − cos y sin2 t

)
.

Calculate the four tensors αB , αU , ΓB , ΓU and hence the growth rate of any
instability.

12/32



Cases where it works well
Suppose the basic state flow and field depend only on x , y and t (e.g. from a forced
flow with a background field). This is an extension of the classic work of G.O. Roberts
(1970).
Then one can consider perturbations of the form
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Calculating the averages

We impose uniform kinematic mean fields and flows in the xy -plane in order to
calculate the components of the four tensors αB , αU , ΓB , ΓU .

For the cases we have looked at, the averages are well-behaved. For example, the
cumulative time average of the x-component of 〈U × b′ + B × u′〉:
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Comparison with the instability growth rate

For two-dimensional flows we can, independently, solve the three-dimensional problem
and then compare the true growth rate with that derived from the mean field
approach.

AKA flow MW flow
(From CHP 2010.)

σ(k) = < (p(k))
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Possible Problems

1. Mean value dominated by fluctuations, so averages are, at best, hard to compute:

Rotating convection: calculation of emf after imposition of weak uniform field. (a),
(b) no small-scale dynamo; (c) small-scale dynamo. (From Hughes & Cattaneo 2008.)
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Possible Problems

1 (contd). Even cumulative time averages sometimes inconclusive:
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Possible Problems

2. More dramatically, the linear theory simply does not work — averages become
unbounded as trajectories diverge.

We found this by considering certain types of ABC forcing.

Here we choose the forcing to drive the 1 : 1 : 1 ABC flow defined by

U = (sin z + cos y , sin x + cos z, sin y + cos x).

The flow is stable to the forcing for small enough Re.

For small values of Rm, the averages are well-defined, as for the 2D flows.

But there are problems at higher Re and Rm.
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ABC forcing: Re = Rm = 300

Resulting flow is now no longer the ABC flow but is time-dependent and disordered.

Time series of the basic state flow ~U and field ~B for Re = Rm = 300.
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ABC forcing: exponential growth of averages

Three components of 〈U × b〉 versus time after imposition of B0x̂ .
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Response to the nonlinear problem

Rather than imposing kinematic mean flows and fields — which can lead to ill-defined
mean quantities — we could instead impose dynamic flows and fields; i.e. all the
nonlinear terms are retained.
We might expect that a small symmetry-breaking term would lead to a small change
in mean quantities, even with large excursions.

So can we calculate the tensors αB , αU , ΓB , ΓU from the linear limit of the nonlinear
equations, which we presume has bounded solutions?

Let us consider this question by first examining some ostensibly (much) simpler
problems.

We shall consider three one-dimensional maps xn+1 = f (xn):

• Tent map

• Cubic logistic map

• Lorenz map
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Tent Map

f (x) defined by:

f (x) = −2−3x −1 ≤ x ≤ −1/3

= 3x − 1/3 ≤ x ≤ 0

= ax 0 ≤ x ≤ 1/a

=
1 + a− 2ax

a− 1
1/a ≤ x ≤ 1

a = 3 gives the symmetric map (red).
Asymmetric map (green) has a = 5.

Probability density for iterations, ρ(x)dx (the invariant measure), given by
Frobenius-Perron operator:

ρ(x) =
∑
i

ρ(x̃i )

|f ′(x̃i )|
, with

∫
ρ(x)dx = 1.

Invariant measure is constant for the symmetric tent map. For the asymmetric map it
is piecewise constant, ρ = ρ+ for x > 0, ρ = ρ− for x > 0.
Blue line shows the invariant measure for a = 5.
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Calculating ρ(x)

Each point x has three pre-images x̃i (two positive and one negative if x > 0).
Then ρ+ and ρ− satisfy the two equations

ρ+ =
1

3
ρ− +

(
1

a
+

a− 1

2a

)
ρ+, ρ− =

2

3
ρ− +

a− 1

2a
ρ+.

These two relations are equivalent, so together with

ρ+ + ρ− = 1,

we obtain

ρ+ =
2a

5a− 3
, ρ− =

3(a− 1)

5a− 3
.

Mean value of x given by

〈x〉 = ρ−

∫ 1

0
xdx + ρ+

∫ 1

0
xdx =

1

2
(ρ+ − ρ−) =

3− a

2(5a− 3)
.

So here, small deviations in asymmetry (i.e. in a− 3) lead to small (linear in a− 3)
perturbations to the mean.
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The Cubic Logistic Map

f (x) defined by:

f (x) = µ0 + 2.8x − x3

Map is into [-2,2] provided that µ0

is sufficiently small.

Not possible to calculate ρ(x) analytically in this case.
What can we learn from numerical iterations of the map?
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The Cubic Logistic Map: double precision iterations

Double: Histogram of averages

0.0000 0.0005 0.0010 0.0015
Average

0

100

200

300

400

500
avg: 0.00081078 +/− 0.00001368

µ0 = 10−6

2000 starting points
109 iterations
Double precision (52 bit mantissa)
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The Cubic Logistic Map: multiple precision iterations

Multi Precision (256): Histogram of averages

0.0012 0.0013 0.0014 0.0015 0.0016
Average

0

10

20

30

40

50

60
avg: 0.00138229 +/− 0.00000109

2000 starting points
109 iterations
Multiple precision (256 bit mantissa)
Red vertical lines show mean and ± standard deviation; red curve is associated
Gaussian
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The Cubic Logistic Map: Iterations
Double
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Multiple precision
2000 initial conditions,
109 iterations
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The Cubic Logistic Map: Variation of 〈x〉 with µ0

Complicated dependence of 〈x〉 on µ0 — certainly no obvious linear dependence.
Attributable to the existence of a dense set of periodic windows, leading to a highly
complex invariant measure.
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The Lorenz Map

f (x) = µ0+sgn(x)
(
−1 + 1.5

√
|x |
)

No stable periodic orbits, so possi-
bly more sensible results

〈x〉 versus µ0

Excluding smallest value
of µ0, very good linear de-
pendence (slope = 1.007).
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Back to the MHD problem

If we now return to the MHD ABC problem, and impose dynamical fields and flows, is
there a measurable response that is linear in the strength of the flow and field?

Three components of 〈U × b〉 versus time.

Three components of 〈U × b〉 versus time.

Imposed field B = 10−3x̂ ; Re = Rm = 300.
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Dynamic MHD: linear response?

e.m.f. versus imposed field strength

For sufficiently weak imposed magnetic fields, we can detect a linear response.

But one needs to get into the very weak field regime and integrate for very long times.
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Dynamic MHD: another example
Forcing chosen to give non-zero α and Γ tensors.:

F = MW+ + 0.5 ∗ ABC(1 : 1 : 1) (Re = 200,Rm = 500).

Certainly at these field strengths not yet a convincing linear response.
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Conclusions

• The long wavelength instability of MHD states is determined by four tensors, αB ,
αU , ΓB , ΓU . Two of these are new, and they must all be considered in order to
determine instability. The symmetry properties etc. of these tensors have not yet
been fully explored.

• Calculating the tensors through the linear problem can lead to unbounded results.
Can the nonlinear problem give a well-defined linear response? Examination of
simpler iterative maps suggests that the answer is not straightforward (cf. Baladi
2014; Gottwald et al. 2016).

• Can speculate that with smooth invariant measures on the attractor there may be
some hope of finding a linear response. However there is still the problem of the
signal/noise ratio.

• Not totally clear how this carries through to complex systems. For our MHD
problem, provided the flow is sufficiently complicated it seems that, for small
enough imposed fields and flows, there is a measurable linear response. However
the computational effort required to probe this regime is significant.

• Is this linear response what we need to apply the linear evolution theory? This
may be testable in 2D.
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