Turbulence/Neoclassical interaction through poloidal convective cells Yuuichi ASAHI¹

V. Grandgirard², Y. Idomura³, G. Latu², Y. Sarazin², G. Dif-Pradalier², X. Garbet², P. Donnel⁴

QST, 039-3212, Rokkasho, Aomori, Japan
 CEA, IRFM, 13108 Saint-Paul-lez-Durance Cedex, France
 JAEA, CCSE, Kashiwa, Japan
 EPFL, SPC, CH-1015 Lausanne, Switzerland

Date: 2/July/2019 10th Festival de Théorie, Aix-en-Provence, France

nergie atomique • energies alternatives

Magnetic confinement fusion

- Good confinement

 $\mathbf{F} = D\nabla G$

F :Flux (particle, heat)
G :Gradient (density, temperature)
D :Diffusion coefficient

ITER in Cezanne style

—____30 m _____

Better understanding of transport phenomenon

Charged particle motion in magnetic field

Equation of motion

- Traverse the magnetic field line due to drift motion $V_E + V_D$
- These traverse motions can harm confinement property

Neoclassical transport

- Step width larger than the Larmor radius in classical transport
- Caused by the spatial dependence of magnetic drift V_D

Turbulent transport

• Characteristic length

$$\xi_{\boldsymbol{k}r} \sim \left(\frac{cE_{\boldsymbol{k}\theta}}{B}\right)\delta\tau_{c\boldsymbol{k}}$$

travel distance of a particle by **ExB drift** \mathbf{V}_E

• Correlation time $\delta \tau_{ck}$

generation/annihilation of a vortex

• Heat flux from high T region to low T region by random walk

Ishizawa, et al

Plasma turbulence simulation

Each grid point has structure in real space (x, y, z) and velocity space (vII, v_{\perp})

 \rightarrow 5D stencil computations Problem size: $\sim 10^{10}$

[Idomura et al., Comput. Phys. Commun (2008); Nuclear Fusion (2009)]

The fusion plasma performance is dominated by plasma turbulence

Predicting performance of future fusion machines ITER/DEMO

First principle full-f 5D gyrokinetic model is employed for plasma turbulence simulation

- Resolving machine scale (~ m) with turbulence scale mesh (~ cm)
- Solving profile and fluctuation without scale separation (full-F approach)
 Neoclassical + Turbulence transport

full-F gyrokinetic simulations

Gyrokinetic equation: Solve f

 $\partial_t f - [H, f] = C + S + K$

C : collision S : source K : sink

Poisson equation: Solve electric field $-\nabla_{\perp} \cdot (P_1 \nabla_{\perp} \phi) + P_2 (\phi - \langle \phi \rangle) = \rho [f]$

 Solving profile, fluctuation consistently (full-F approach)

ORB5 (PIC), XGC1 (PIC), GKNET (Euler), GYSELA (Semi-Lagrangian), GT5D (Euler)

- Fixed heat source + sink (krook) + collisions (neoclassical transport)
- Simulate self-organisation induced by plasma turbulence

 ρ

GYSELA code

Physics

• Modeling ITG turbulence in Tokamak

- Flux-driven full-F gyrokinetic model
- Solving 5D Vlasov + 3D Poisson eqs.
- Neoclassical physics by collision op.
- Full kinetic or trapped kinetic electrons (Adiabatic electrons in this work)
- Semi-Lagrangian scheme to solve Vlasov
- Interpolation of footpoints: Spline/Lagrange
- Parallelisation: MPI + OpenMP
- 3D domain decomposition by MPI $N_{\text{MPI}} = p_r \times p_{\theta} \times N_{\mu}$
- Good scalability up to 450 kcores

[1] V. Grandgirard, et al, CPC (2016)

Numerics

Poloidal asymmetry matters

- RF heating
- Centrifugal force by toroidal rotation
- Reynolds Stress (RS) by Plasma turbulence [1]

[1] P. Donnel, et al., PPCF, (2018)
[2] C. Angioni et al, PPCF, (2014)
[3] S. Breton et al, NF, (2018)
[4] P. Donnel, et al., PPCF, (2019)
[5] S. K. Wong, Phys Plasmas, (2009)

Convective cells are instrumental in neoclassical transport

Dynamics of phase of CCs

• Up-down asymmetry (GAM) to in-out asymmetry (Conv cells) [1] P. Donnel, et al., PPCF, (2018)

• Analytically $\det \varepsilon = 0$ gives the GAM frequency

Symmetry changes depending on the frequency (up-down to in-out)

[1] P. Donnel, et al., PPCF, (2018).

Impact of Conv Cells to transport

• Famous pictures from Z. Lin [1] to demonstrate the impact of ZF

w ZFs w/o ZFs

Turbulence regulation by ZFs

[1] Z. Lin, et al, Science (1998).[2] Y. Asahi, et al, PPCF (2019).

• This work [2]: Impact of **Convective cells** by filter (m>=1, n=0 modes)

• Turbulence regulation: vortex shearing (m>=1 mode) [1] weak

Convective cells on transport

- Significant contribution of CCs on particle transport (Solid, dotted lines)
- Neoclassical energy transport (blue and cyan)

CCs contribute on neoclassical flux

CCs affect distribution function

Summary, Future work

Turbulence/neoclassical interactions via CCs

- Turbulence can generate convective cells (large scale structure)
 Up-down (GAM) to in-out (Convective cells) asymmetry
- Turbulence regulation weak
 Weak impact on profiles and vortex shearing
- Convective cells can affect neoclassical transport
 Contributions from convective cells are non-negligible

Future work

- Impact of kinetic electrons
- Circular to Realistic geometry

Circular (KE)

JT-60U (KE)

Electron temperature gradient mode

R

V_{De}: Magnetic drift

$$\mathbf{v}_{\mathrm{D}e} = -\frac{1}{eB}\mathbf{b} \times \left[\frac{m_e v_{\parallel}^2 + \mu B}{B}\nabla B + \frac{m_e v_{\parallel}^2}{cB^2/4\pi}\nabla P\right]$$

Dependence on temperature toroidal ETG mode

- (1) Temperature fluctuation
- (2) Speed difference in V_{De}
- (3) Charge seperation
- (4) Electric field \Rightarrow **E x B** drift
- (5) fluctuation growth