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THE GENERAL MACHINE LEARNING (ML) SET UP 
FOR THIS TALK * 

• The box: represents a complex nonlinear I/O relationship with a very large number of 
adjustable parameters. 

• Training: Based on many examples of inputs and their corresponding desired outputs, 
adjust the parameters to best fit the desired output. (And it is hoped that these best 
fit outputs are indeed exceedingly close to the ideally desired  outputs.)  

• Two Big Questions: (1) Is training practically feasible, given the large number of 
parameters to be determined? (2) If similar inputs were continued after the training, 
would the desired outputs continue to be produced (i.e., does the trained ML device 
“generalize” from the specific training examples to the broad class from which the 
training examples were drawn)? 

• ML type: What is in the box? It is important in  choosing what is in the box that it 
should result in ‘yes’ answers to the above two questions. 
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ML 
DEVICE 

INPUT OUTPUT 

*Other applicable terms: “statistical learning” and “supervised learning.” 



ML APPLIED TO DYNAMICS 
     DYNAMICAL SYSTEM: A system whose ‘state’ evolves in time 
and for which the future evolution of the system state depends 
only on the current state. 

 AN ILLUSTRATIVE MACHINE LEARNING TASK IN DYNAMICS: 
Given a time series of past state dependent measurements  
from an evolving unknown dynamical system, predict the 
future evolution of those measurements.  

     Assuming the system is stationary in time [Jaeger & Haas, 
Science (2004)]: 
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Reservoir Computing*  

* Original papers on reservoir computing: 
   “Liquid State Machines” [W. Maas et al. (2002)] 
   “Echo State Networks” [H. Jaeger (2001)] 
  
 
 
 

In this talk we focus on a particular type of   
of machine learning called “reservoir  
computing.” We note, however, that other  
types of machine learning (notably  
types of ‘deep learning’) could potentially  
be used for the problems we consider. 
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Outline 

    Using reservoir computing for model-free 
prediction from data. 

    Examples extending the above: 

 

 

     

Conclusion 

  

 

 

 

(a)Prediction of a spatiotemporally chaotic system 
(b)Parallel approach to prediction of large systems* 
(c)Hybrid knowledge-based/machine-learning approach** 
(d)Combining the parallel and hybrid approaches*** 
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   * J. Pathak, B. Hunt, M. Girvan Z. Lu and E. Ott, Phys. Rev. Lett. 120, 024102 (2018).        
 ** J. Pathak, A. Wikner, R.Fussell, S.Chandra, B.R.Hunt,  M. Girvan and E. Ott, Chaos  
          28, 041101 (2018). 
***In preparation. 
 
 



Artificial Neural Network 

Reservoir Implementation* 
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• In our examples the reservoir  
is a directed weighted 
network of D neuron-like 
units which are the nodes of 
the network. 

• Each node i has multiple 
inputs and outputs and its 
scalar state is the i th entry of 
the D-dimensional reservoir 
state vector r(t). 

• The weighted connections 
between the nodes are 
represented by a D by D 
adjacency matrix A. 

* There are other ways to physically implement a reservoir (optical, FPGAs, ….).  



Reservoir Response Data  

An input vector* is coupled to the 

reservoir network through a fixed, 

randomly generated input matrix.  

Response Data  
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u(t) and r(t) are recorded and stored. 

*During this reservoir response data acquisition phase, the elements of 

the input vector u(t) are measurements of state variables from the 

dynamical system of interest.  Following this phase, our goal will be to 

predict the future evolution of u(t).  

Neuromorphic motivation. 



Training for Prediction 

An input is coupled to the 

reservoir network through a fixed, 

randomly generated input matrix.  

u(t) and r(t) are recorded and stored.  

Training. Determine the output weight matrix 

by minimizing the following function: 

Response Data  
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+ (a Tikinov regularization term to prevent  

overfitting and promote generalization) 



Prediction 
An input is coupled to the 

reservoir network through a fixed, 

randomly generated input matrix.  

Training. Determine the output weight 
matrix by minimizing the following 
function: 

Prediction 

Response Data   
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u(t) and r(t) are recorded and stored 

This implementation of reservoir computing prediction has previously been 

successful for low dimensional chaotic systems [Jaeger & Haas, Science (2004)].  

Our first question is whether it can be used for high dimensional systems. 

+ (a Tikhonov regularization  

term to prevent overfitting) 



Outline 

• Using reservoir computing for model-free prediction from 
data. 

• Examples extending the first bullet: 

 

 

 

 

• Conclusion 

(a)Prediction of a spatiotemporally chaotic system  
(b)Parallel approach for large spatiotemporal systems* 
(c)Hybrid knowledge-based/machine-learning approach** 
(d)Combining the parallel and hybrid approaches*** 
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    * J. Pathak, B. Hunt, M. Girvan, Z. Lu and E. Ott, Phys. Rev. Lett. 120, 024102 (2018).        
  ** J. Pathak, A. Wikner, R.Fussell, S.Chandra, B.R.Hunt,  M. Girvan and E. Ott,  
            Chaos 28, 041101 (2018). 
*** In preparation. 
 
 



Our Illustrative Example: 
The Kuramoto-Sivashinsky Equation 

The Kuramoto-Sivashinsky  (KS) equation is a spatiotemporally  
chaotic system: 

      We use numerical solutions of the KS equation to produce ‘simulated 

measurements’ from which we attempt to predict the future evolution without 

knowledge of the KS equation itself. The input to the reservoir system (i.e., the 

simulated data) is the vector whose elements are the Q values of y(x,t) at the grid 

points, x = L/Q, 2L/Q, …. , L.  

      For this example, we take the spatial interval between measurements to be 

small compared to the spatial extent of features of the KS equation, so that the 

measurements accurately approximate y(x,t) as a continuous function of  x. 



Results: Short Term Forecasting of 
Chaos 

*We achieve good prediction 
quality for 5 Lyapunov times.   

 

 

Actual Evolution 

Reservoir Prediction 

Error [(top panel) –                           
.            (middle panel)] 
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(9000 reservoir nodes) 

The attractor dimension is about 13. 
*Training reusability. 



But 

• We desire the ability to treat much larger grid size      
(e.g., 2 or 3 dimensional grids).  
 

• This potentially requires a vastly larger reservoir 
size to resolve the evolving spatial pattern. 
 

• However, the computational time for training the 
reservoir scales poorly with the size of the 
reservoir. 
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Outline 

    Using reservoir computing for model-free 
prediction from data. 

    Examples extending the first bullet: 

 

 

     

Conclusion 

  

 

 

 

(a)Prediction of a spatiotemporally chaotic system 
(b)Parallel approach to prediction of large systems* 
(c)Hybrid/knowledge-based machine-learning approach** 
(d)Combining the parallel and hybrid approaches*** 
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       28, 041101 (2018). 
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• Based on the locality of short term causal interactions for the systems we 
consider. 

• We use a stack of reservoirs which combine together and run in parallel. 

• In the training phase, each reservoir takes inputs from a local neighborhood 
on the model grid and predicts a subset of its inputs. The local neighborhood 
consists of the nodes to be predicted plus buffer zones on each side. 

• Each of the relatively small parallel reservoirs has its own relatively small 
output matrix (which can be independently trained). 
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Localized Prediction with Reservoirs in Parallel 

Time 𝒕 

Time 
𝒕 + 𝚫𝒕 



During the prediction phase, for a given reservoir, 
the inputs that it predicts are replaced by its own 
output, while the inputs from its buffer zones are 
taken from the outputs of its two neighboring 
reservoirs on each side. 
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Parallel Scheme in the Prediction Phase 



 A Result for Parallel Prediction  
of a Large System 

Actual Evolution 

Parallel Reservoir 
     Prediction 

Parallel Reservoir  
Prediction Error 
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(64 parallel reservoirs  
each with 5000 nodes) 

With our computer resources, parallelization is  
necessary in order for us to treat this L=200 case. 



(*) The true model 
is given the imperfect 
initial condition 
provided by the first 
prediction step of 
of the reservoir 
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X 



For the different curves in this plot, the size of the individual  

reservoirs (5000), and [(# of reservoirs) / L] = 0.32 are both kept fixed  

as L is increased. 19 
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g = ( number of reservoirs ) 

Each reservoir has 5000 nodes 

X 



A Comment 
     

   The ML grid density need not be the same as the 
grid density of the knowledge-based component, and 
the ML grid density can also be inhomogeneous.  

   This freedom can be utilized for providing enhanced 
resolution (through greater density of the ML grid) or 
as a strategy for enhanced regional forecasting (by 
restricting the denser ML component to selected 
area).  
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Outline 
• Using reservoir computing for model-free 

prediction from data. 

• Examples extending the first bullet: 

 

 

 

• Conclusion 

 

 

 

  

 

 

 

 

 

 

 

(a)Prediction of a spatiotemporally chaotic system 
(b)Parallel approach for large spatiotemporal systems*  
(c)Hybrid knowledge-based/machine-learning approach** 
(d) Combining the parallel and hybrid approaches*** 
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    * J. Pathak, B. Hunt, M. Girvan, Z. Lu and E. Ott, Phys. Rev. Lett. 120, 024102 (2018).        
  ** J. Pathak, A. Wikner, R.Fussell, S.Chandra, B.R.Hunt,  M. Girvan and E. Ott, Chaos  
       28, 041101 (2018). 
***In preparation. 

 
     
  
 
 
 



Open-loop Configuration 
(Training) 

Closed-loop Configuration 
(Prediction) 

J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, and E. Ott,  
Chaos 28, 041101 (2018).  
 

Reference: 

HYBRID APPROACH 

Comments: 
(1) It should be advantageous to utilize all potentially valid information whether it is in the  
form of data or physical laws.  
(2) It is expected that the minimization of error in the training phase will lead to combining  
of disparate prediction components in such a way that, if one component is superior for  
some aspect, then it will be more determinative for that aspect of the combined prediction. 



𝑦𝑡 = −𝑦𝑦𝑥 − 𝑦𝑥𝑥 − 𝑦𝑥𝑥𝑥𝑥 

𝑦𝑡 = −𝑦𝑦𝑥 − (1 + 𝜖)𝑦𝑥𝑥 − 𝑦𝑥𝑥𝑥𝑥 

The “true” unknown system: 

The imperfect model: 

= 0.1 
500 reservoir nodes 

hybrid 

 = 0.01 

8000 reservoir nodes 

hybrid 

Reservoir  
     error 
 
    Model 
     error 
  
   Hybrid 
    error 

   Actual 
evolution 



Outline 
• Using reservoir computing for model-free 

prediction from data. 

• Examples extending the first bullet: 

 

 

 

• Conclusion 

 

 

 

  

 

 

 

 

 

 

 

(a)Prediction of a spatiotemporally chaotic system 
(b)Parallel approach for large spatiotemporal systems*  
(c)Hybrid knowledge-based/machine-learning approach** 
(d) Combining the parallel and hybrid approaches*** 
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COMBINED PARALLEL/HYBRID SCHEME 

For use in very large complex spatiotemporal systems (as in weather 
forecasting), we think that it will be crucial to use both our hybrid approach (to 
combine learning from data with physical knowledge) and our parallel 
approach (to make the learning component of such a huge complex system as 
the Earth's atmosphere feasible).  



APPLICATION TO KS EXAMPLE (L=100) 
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Actual evolution 

ML Parallel prediction 
error (4 reservoirs,  
1000 nodes each) 

Imperfect model error 
with 10% error factor 

Parallel/Hybrid error 



 Another Example:  
Models from Lorenz, J.Atmos.Sci. 62, 1374 (2005) 

      In this paper, Lorenz discusses three toy models of 
successively increasing ‘reality’ and complexity.  

       These toy models are for a single scalar variable 
with one-dimensional spatial variation and periodic 
boundary conditions (like our previous KS example).  

       They were designed by Lorenz so as to mimic 
features of weather (e.g., atmospheric Rossby waves) as 
one traverses a latitude circle around the Earth (hence 
the periodic boundary condition).  

       We refer to Lorenz’s most ‘realistic’/complex model 
as “Lorenz Model 3.” 
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Lorenz Models 2 and 3 

   Lorenz Model 3: Designed to roughly mimic the fact that 
atmospheric processes have space/time variations on multiple 
scales. The model has two scales, one is relatively long/slow; the 
other (which has substantially smaller amplitude) is short/fast. 
The two scales interact and influence each other’s evolution. 

 

    Lorenz Model 2: Lorenz Model 3, but without the short/fast 
component. 

 

Our numerical experiment: 

    The ‘true’ evolution is from Model 3. 

    The imperfect knowledge-based model is a corresponding 
version of Model 2. 
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Actual  
Evolution 
(Model 3) 

Prediction Error 
Imperfect Model 

(Model 2) 

Prediction Error 
 Parallel ML 

Prediction Error 
Hybrid Approach 

           A 
PRELIMINARY 
      RESULT 



Current Work of Our Group: 
Application to Weather Forecasting 

• Implementation of a parallel/hybrid system using a 
simplified, but semi-realistic, global weather code (SPEEDY) 
as the knowledge-based component. 

• Incorporation of 6 hour cyclic forecasting (typical at 
operational weather forecasting centers) with an associated 
data assimilation procedure based on adaptation of the 
Local Ensemble Transform Kalman Filter (LETKF). We have 
preliminary results on this. 

• The issue of a source of training data for the ML component. 

 

*E.g., atmospheric  ‘reanalysis data,’ which is obtained by 
probabilistically estimating retrospective states via optimizing 
their consistency with both past and future evolution 
measurements. 31 



Conclusion 

• With more research, we believe machine learning 
will become a standard tool for studying the 
dynamics of a broad range of high dimensional 
complex chaotic systems. 

• There are many potential applications (e.g., 
weather prediction, oceans, etc.) 
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Our Papers Applying Machine Learning to NLD 

• “Reservoir observers: Model-free inference of unmeasured 
variables,” Z. Lu et al., Chaos 27, 041102 (2017). 

• “Using machine learning to replicate chaotic attractors and 
calculate Lyapunov exponents from data,” J. Pathak et al. 
Chaos 27 , 121102 (2017). 

• “Model-free prediction of large spatiotemporally chaotic 
systems from data: A reservoir computing approach,” J. 
Pathak et al., Phys. Rev. Lett. 120 , 024102 (2018). 

• “Hybrid forecasting of chaotic processes: Using machine 
learning in conjunction with a knowledge-based model,” J. 
Pathak et al. , Chaos 28, 041101 (2018). 

• “Attractor reconstruction by machine learning,” Z. Lu, et al., 
Chaos 28, 061104 (2018). 

Blue color: Topics not discussed in this talk. 
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