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Uriel and turbulence

Memories of fifty years of turbulence studies.
Our student’s time and after.
A (short) presentation of recent joint work with Martine Le Berre
and Thierry Lehner: intermittency explained!



A quote to keep in mind

A quote to keep in mind when studying turbulence
”A great many people think they are thinking when they are
rearranging their prejudices”
William James (US Pragmatist philosopher and psychologist, 1842
- 1910)
Quoted by P.H. Davidson in his book on Turbulence (Cambridge
U. Press)



Weierstrass counterexample (1872)

Example of a periodic continuous function of t non differentiable
almost everywhere (original notations)

f (t) = Σνb
ν cos(aνπt),

Is continuous and non differentiable almost everywhere if a positive
integer and if

ab > 1 + 3π/2.



The fundamental question in turbulence:
Do flows of incompressible fluids at large or infinite Reynolds
number (namely at small or zero viscosity) present finite time
singularities localized in space? Short presentation of the
theoretical situation or are they continuous and non differentiable
as Weierstrass counterexample?
Single-point records of velocity fluctuations display correlations
between large velocities and large accelerations in full agreement
with scaling laws derived from Leray-like equations (1934) for
self-similar singular solutions to the fluid equations (Euler-Leray
equations). Conversely, those experimental velocity - acceleration
correlations are contradictory to the Kolmogorov scaling laws.
Moreover the so-called structure functions display a remarkable
transition at increasing power of the fluctuation, in full agreement
with what is found by supposing the flow as made of individual
Leray-like singular events almost independent of each other.



Leray’s singularities

The Euler-Leray equations for self-similar singular solutions of an
inviscid incompressible fluid are derived from the Euler equations.
The similarity exponents take into account either Kelvin’s theorem
of conservation of circulation or energy conservation (if energy is
finite)
1) What are Euler-Leray equations ? + a strategy for an explicit
(analytical) solution.
2) Amazing agreement between predictions of Euler-Leray with
intermittency deduced from recordings of velocity fluctuations in
Modane wind tunnel.
Dissipation by localized singularities in other settings: shock waves
in compressible fluids, white caps of gravity waves, NLS focusing
equation (joint work with Christophe Josserand and Sergio Rica)
Challenge (+ work in progress): put localized (space and time)
dissipation in a coherent statistical framework.
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Derivation of Leray’s equations.1

In 1934 Jean Leray (”Essai sur le mouvement d’un fluide visqueux
emplissant l’espace”, Acta Math. 63 (1934) p. 193 - 248)
published a paper on the equations for an incompressible fluid in
3D. He introduced many ideas, among them the notion of weak
solution and also what problem should be solved to show the
existence (or not) of a solution singular after a finite time with
smooth initial data.
Leray assumed a solution of Navier-Stokes 3D blowing-up in finite
time at a point, following self-similar evolution for reasonable
initial data. Unknown yet if this solution exists, either for Euler
and/or NS.



Derivation of Leray’s equations.2
Euler equations (inviscid, incompressible, 3D):

∂tu + u · ∇u = −∇p,

and
∇ · u = 0,

Leray looked (with viscosity added, Navier-Stokes equations) to
self-similar solutions of the type:

u(r, t) = (t∗ − t)−αU(r(t∗ − t)−β),

where t∗ is the time of the singularity (set to zero), where α and β
are positive exponents to be found and where U(.) is to be derived
by solving Euler or NS equations.
That such a velocity field is a solution of Euler or NS equations
implies 1 = α + β. The conservation of circulation in Euler
equations implies 0 = α− β, and α = β = 1/2. If one imposes
instead that a finite energy in the collapsing domain is conserved,
one must satisfy the constraint −2α + 3β = 0, which yields
α = 3/5 and β = 2/5, the Sedov-Taylor exponents.



Derivation of Leray’s equations.3

No set of singularity exponents can satisfy both constraints of
energy conservation and of constant circulation on convected
closed curves. α = β = 1/2 if there are smooth curves invariant
under Leray stretching.
Otherwise one has to take the Sedov-Taylor scaling, assuming that
1) the collapsing solution has finite energy,
2) no closed curve is carried inside the singular domain while
keeping finite length and remaining smooth.



Derivation of Leray’s equations.4

Introduce boldface letters such that R = r(−t)−β. The Euler
equations become the Euler-Leray equations for U(R):

−(α U + β R · ∇U) + U · ∇U = −∇P,

and
∇ ·U = 0

A general time dependence can be kept besides the one due to the
rescaling of the velocity and distances by defining as new time
variable τ = − ln(t∗ − t). This maps the dynamical equation into

∂U

∂τ
− (αU + βR · ∇U) + U · ∇U = −∇P,

∇ ·U = 0

Equivalent to the original Euler equations.



Explicit solution of Euler-Leray equations: an outline

Euler-Leray equations in axisymmetric geometry with swirl and
dependence on τ (work in progress + Pomeau-Le Berre in Arxiv):
1) Start from a localized solution of steady localized Euler
equation by solving Hicks (or Bragg-Hawthorne) equations.
Because this has finite energy one takes Sedov-Taylor exponents.
2) Because steady Euler equations are invariant under arbitrary
dilations of amplitude or argument (being homogeneous of order 2
and invariant under dilation of coordinates) one can assume that
the solution of Hicks equation has very large amplitude.
3) This makes the (linear) streaming term added by Leray
arbitrarily small compared to the leading order term which is
quadratic.
4) Solving Euler-Leray by perturbation one meets two solvability
conditions because of the two dilation symmetries of the steady
Euler equations. They can be satisfied by adding two small
oscillations with arbitrary amplitudes or by tuning free coefficients
in the background solution of Hicks equation.



Is it possible to ”observe” Euler-Leray singularities?.1

Our motivation for working on Euler-Leray singularities is their
possible connection with the phenomenon of intermittency in high
Reynolds number flows. This raises several questions:
1. What is specific to Leray singularities compared to other
schema for intermittency?
2. What would be specific of an Euler-Leray singularity in time
records of single point velocity in a large Reynolds number flow ?
3. What are precisely the consequences of the occurrence of
Leray-like singularities on the statistics of a turbulent flow?



Is it possible to ”observe” Euler-Leray singularities?.2

Point 1 : If intermittency is caused by Leray-like singularities, they
should yield strong positive correlation between singularities of the
velocity and of the acceleration. This is what is observed.
Compared to scaling prediction derived from Kolmogorov-like
exponents this (positive) correlation is a strong indication of the
occurrence of singularities near large fluctuations. Moreover
Kolmogorov theory extended to dissipative scales excludes
exponents of the singularity of the velocity fluctuations vs distance
which is less than 1/3: otherwise dissipation is divergent
everywhere in space, clearly impossible.
The only way-out is to have dissipative events at random points in
space and time in the limit of large Reynolds number, instead of
being spread uniformly in space and time (as singularities of the
derivative in the counter example of Weierstrass, 1872).



Euler-Leray singularities and intermittency.1

Kolmogorov K41 theory is based upon the idea that turbulent
fluctuations at very large Reynolds number (where the effect of
viscosity is formally small) depend on the power dissipated in the
turbulent flow per unit mass, ε.
Kolmogorov theory is successful for predicting the spectrum of
velocity fluctuations (Kolmogorov-Obukhov spectrum k−5/3) but is
contradicted by intermittency. Because of it the fluctuations fail to
satisfy the relationship predicted by Kolmogorov between the
velocity fluctuation and the distance between two points of
measurement. Using the scaling law with ε, one finds
< |u(r0 + r , t)− u(r0, t)|3 >∼ (εr) when the distance r is in the
(wide) range between the largest scales and the length scale short
enough to make the viscosity relevant. If applied to arbitrary power
n this predicts that, as r gets smaller and smaller, the amplitude of
the velocity fluctuation decreases, not what is observed. K41
scaling fails badly as soon as n > 4.
Statistical theory based on random occurrence of Leray-like
singularities (see later).



Euler-Leray singularities and intermittency.2
We have very long and high quality records of velocity fluctuations
in the high-speed wind tunnel of Modane in the French Alps,
obtained by hot-wire anemometry (Yves Gagne et al. 1998), and
all sorts of correlations can be studied.
Suppose the large bursts of velocity are due to Euler-Leray
singularities. It means that u(r , t) scales like (−t)−α as t tends to
zero (0 taken arbitrarily as the instant of the singularity). The
acceleration γ (time derivative of Eulerian u) is of order of
(−t)−(1+α) as t tends to zero. Therefore near the singularity both
the velocity and the acceleration diverge, this last one the most
strongly and in this large burst u3 is of order γ if conservation of
circulation is taken:

u3 ∼ Γγ

The multiplicative constant is of the order of a ”typical” value of
the circulation. With the Sedov-Taylor exponents, on has instead:

u8 ∼ Eγ3

where E is the energy inside the collapsing domain.



burst from Modane 2014; γ(t) (red); u(t) (blue)
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Gaussian Statistics?
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Scaling relations : u3 = Γγ or uγ ∼ ε?
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Scalings Leray/circulation: u3 = Γγ ;
Scaling Kolmogorov uγ ∼ ε: invalid



Circulation scaling vs Sedov-Taylor scaling vs Kolmogorov
scaling
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Scalings / circulation (left red): u3 ∼ Γγ
Scalings / energy: Sedov-Taylor (left blue) u8 ∼ Eγ3 ;
Scaling Kolmogorov (right) uγ ∼ ε on the right
Notice: Taylor frozen turbulence does not apply because the large
velocity fluctuations are of the same order as mean velocity.



Sketch of a statistical theory based on the random
occurrence of Leray singularities.1

Mn(r) =

∫
dq νs(q)

∫
dr0

∫
dt |us(r + r0, t|q)− us(r0, t|q)|n

where Mn(r) =< |u(r + r0)− u(r0)|n > with us(r , t|q) Leray-like
solution singular at t = r = 0. Parameter q is for symmetries, and
eventually a multiplicity of different solutions, νs(q) is the density
of singularities in space-time. Two sources of dependence with
respect to r : the phase space part (i.e. the volume d3r0dt at small
r) and the singular dependence of us . If n is less than a critical
value depending on the exponents of the Leray-like solution,
Mn(r) tends smoothy to zero whereas it diverges at r → 0 if n is
larger than a critical value. This is in very good agreement with
Modane’s data by taking the acceleration instead of u. This sharp
dependence of Mn(r) near r = 0 is a direct consequence of the
existence of singular solutions in real turbulent flows.
Everything in this approach is related to specific solutions of the
Euler equations + input of K − ε theory to get νs(q)



Sketch of a statistical theory based on the random
occurrence of Leray singularities.2
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Notice the very sharp difference between the behavior of Mn(r)
for small r as n gets bigger. For ”larger” value of r the two
singularities at r + r0 and r0 become independent and Mn(r)
becomes constant.



Sketch of a statistical theory based on the random
occurrence of Leray singularities.3

The explanation of this difference of behaviors as n increases relies
on the estimate of the contribution of singular events to Mn(r),
assuming first that those events follow a Leray-like law of
self-similarity and then that the solution of the Euler-Leray
equation is linearly stable, or equivalently that Leray-like
singularities have a nonzero basin of attraction in phase space of
initial conditions (perhaps a too strong condition-see remarks
below and coming Arxiv paper). If one makes the first assumption,
one finds that near r = 0 for the acceleration:

Mn(r) ∼ r3+1/β−n(α+1)/β

The first contribution to the exponent comes from the volume of
physical phase space d3r0dt, the other, proportional to n from the
divergence of the self-similar solution at r = t = 0. As n increases
the exponent, as observed, changes from positive (decay of Mn(r)
as r tends to zero) to negative (growth as r tends to zero, except
for a round-off by viscosity very near r = 0).



Sketch of a statistical theory based on the random
occurrence of Leray singularities.4

However, compared to the experimental values of the exponents
the estimated exponents, when positive, are too big. This is
because the parameter q related to the dilation invariance of the
Euler equation depends on time τ and ultimately on viscosity,
which amounts to add a contribution to us decaying like a power
of τ . This takes into account that at very short distances viscosity
becomes relevant and explains why the Euler-exponent
overestimates the growth of Mn(r) at small r .
Another possibility is that α belongs to a continuous spectrum.


