# Statistical physics and statistical inference

Marc Mézard

Ecole normale supérieure PSL University

Aix en Provence, Le 5 juillet 2019 Festival de théorie Conférence René Pellat

### What is inference?

#### Statistics

Infer a hidden rule, or hidden variables, from data.

Restricted sense: find parameters of a probability distribution

Urn with 10.000 balls. Draw 100, find 70 white balls and 30 black

Best guess for the composition of the urn? How reliable? Probability

that it has 6000 white- 4000 black?

If only black and white balls , with fraction x of white, probability to pick-up 70 white balls is  $\binom{100}{70}x^{70}(1-x)^{30}$ 

Log likelihood of x:  $L(x) = 70 \log x + 30 \log(1 - x)$ 

Maximum at  $x^* = .7$  Probability of .6:  $e^{L(.6)-L(.7)}$ 

### Bayesian inference

Unknown parameters x Prior P(x) Measurements y Likelihood P(y|x)

Posterior 
$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

## Bayesian inference

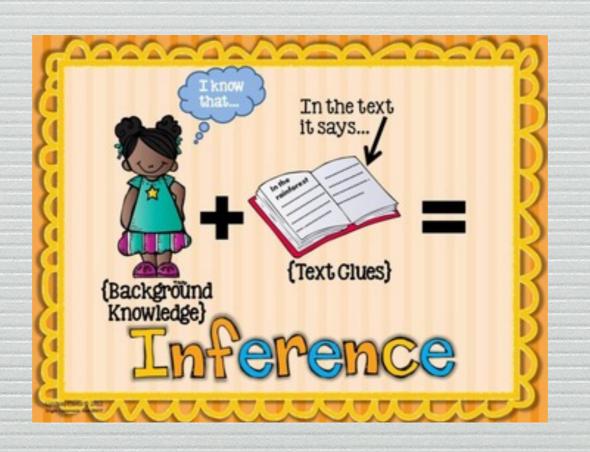
Unknown parameters x Prior P(x) Measurements y Likelihood P(y|x)

Posterior 
$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

### Bayesian inference

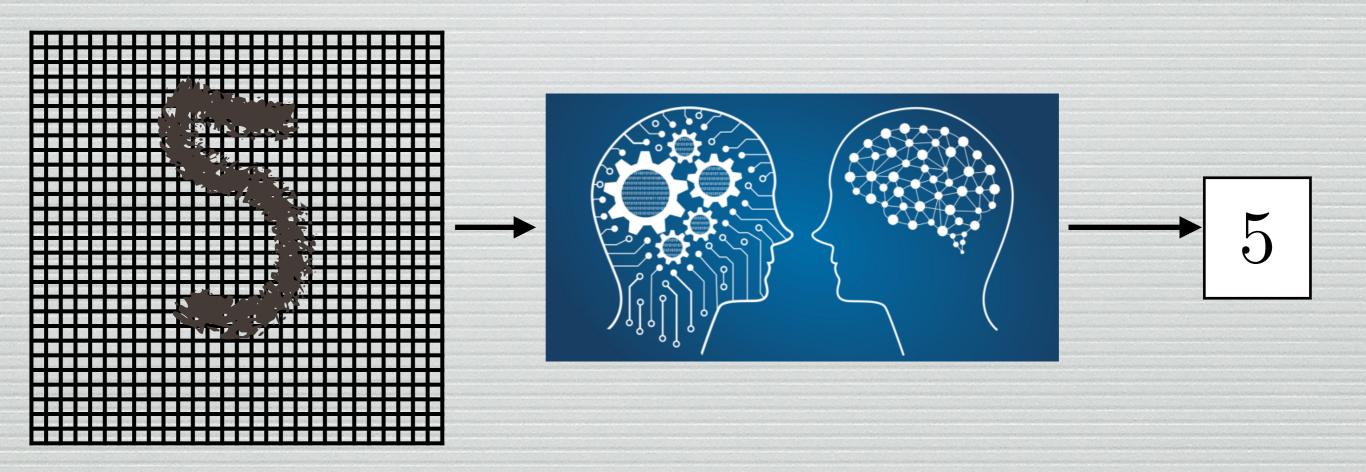
Unknown parameters x Prior P(x)Measurements y Likelihood P(y|x)

Posterior 
$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$



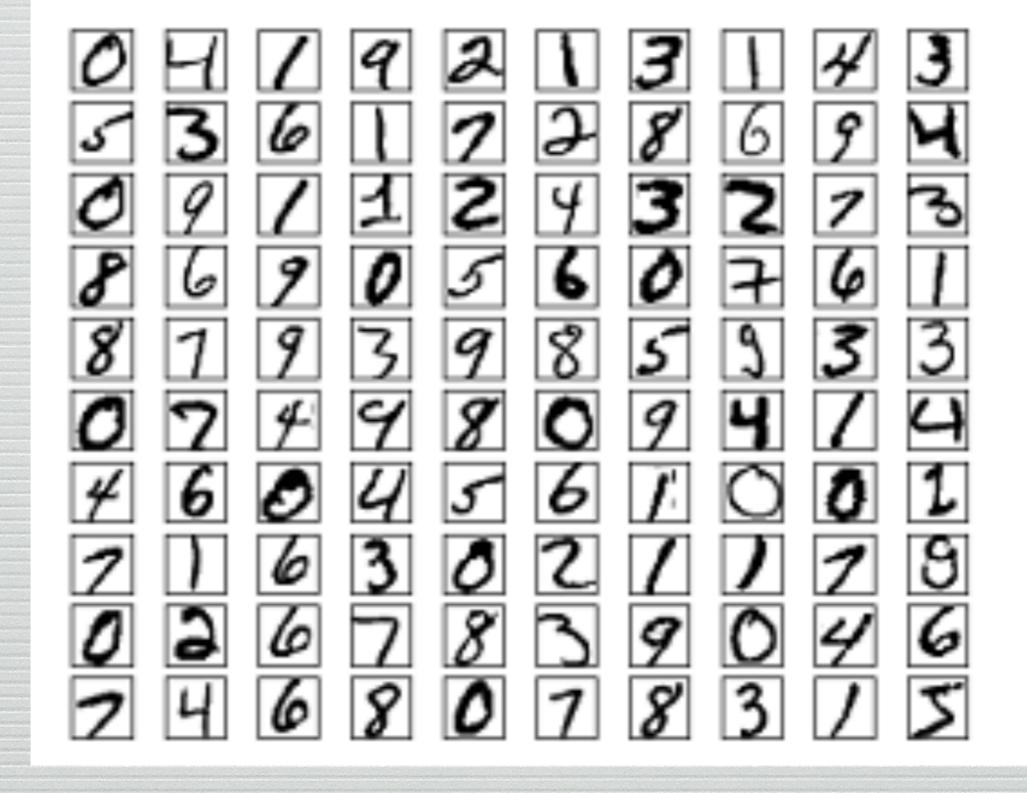
### What is inference?

Artificial intelligence, machine learning



Find a machine that reads handwritten digits...

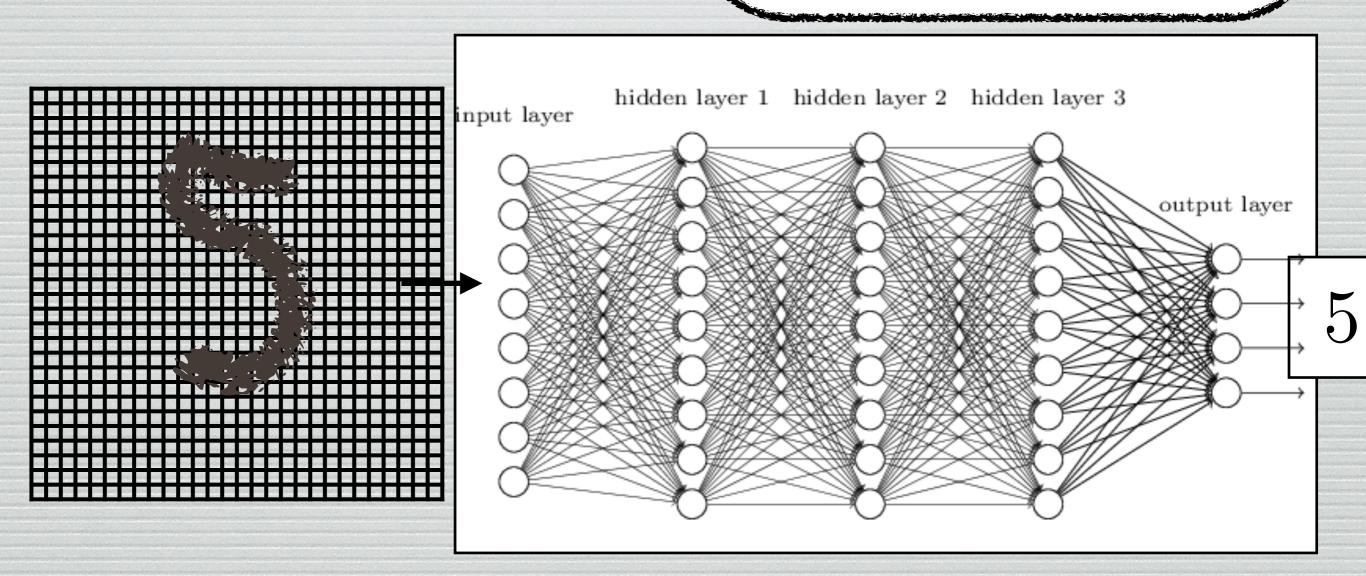
...inferring its parameters from examples



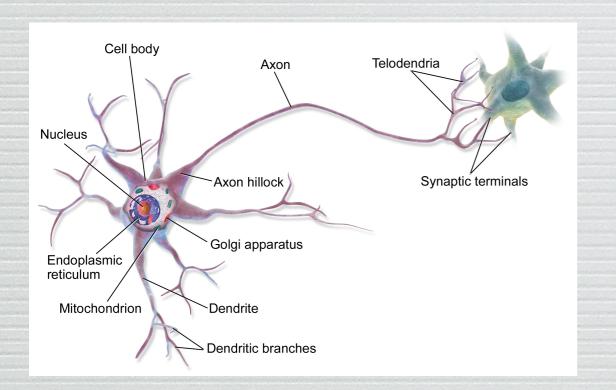
MNIST database : 70,000 images of digits, segmented, 28 × 28 pixels each, greyscale. Known output (supervised learning) 5

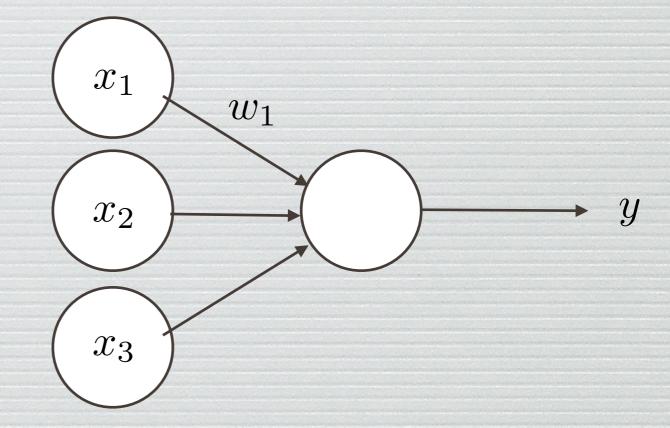
### What is inference?

Artificial intelligence, machine learning



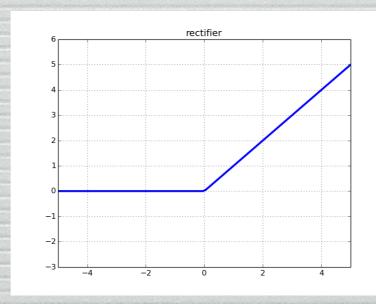
« Neural network »: artificial neurons

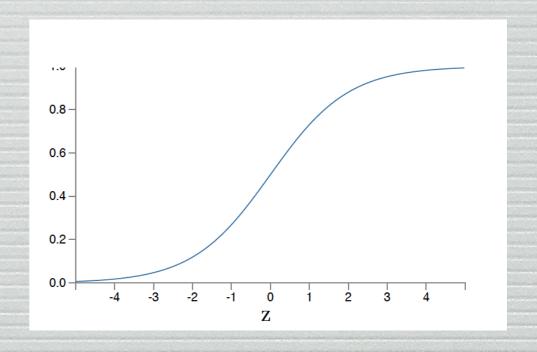




$$|y = f(w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3)|$$

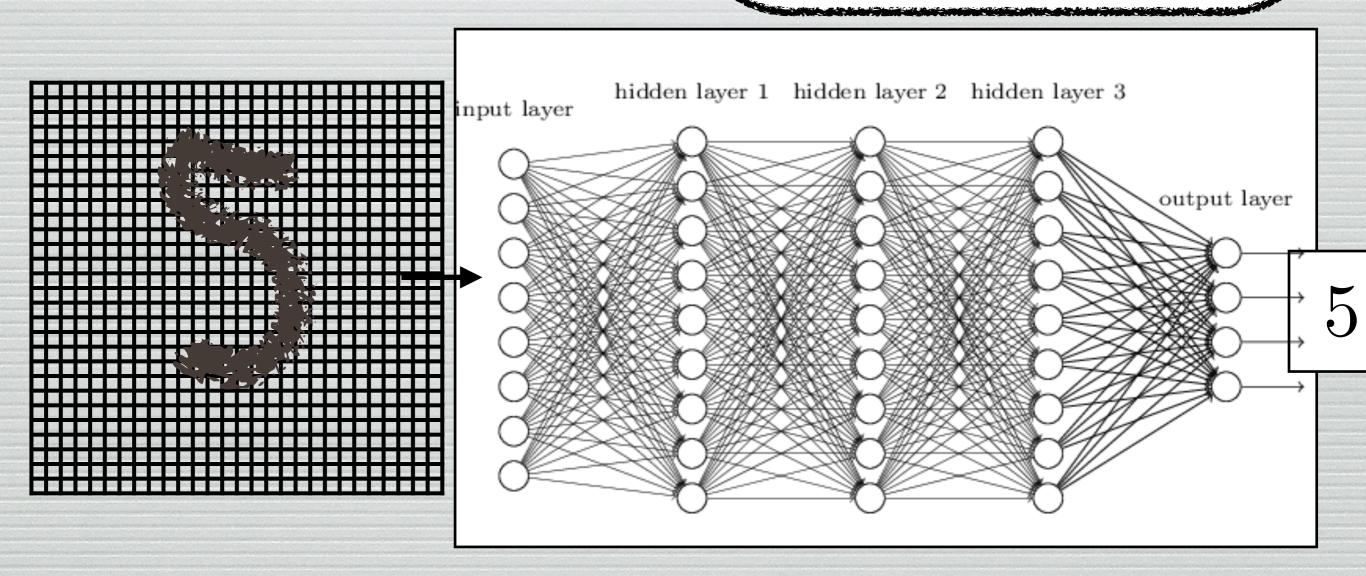
#### Formal neural network





### What is inference?

Artificial intelligence, machine learning



Machine with hundreds of thousands of parameters, trained on very large data base: infer the parameters from data (supervised learning)

#### Statistical inference

Challenge = rules with many hidden parameters. eg: machine learning with large machine and big data, decoding in commonication,...

$$x = (x_1, \dots, x_N)$$
  $N \gg 1$ 

Many measurements 
$$y = (y_1, \dots, y_M)$$
  $M \gg 1$ 

Measure of the amount of data  $\alpha = M/N$ 

### --- Algorithms

Prediction on the quality of inference, on the performance of the algorithms, on the type of situations where they can be applied

## Bayesian inference with many unknown and many measurements

Unknown parameters

$$x = (x_1, \dots, x_N)$$
 Prior  $P^0(x)$ 

Measurements

$$y = (y_1, \dots, y_M) \qquad P(y|x)$$

Bayesian inference

$$P(x|y) \propto P(y|x)P^{0}(x)$$

Often (but not necessarily):

Independent measurements

$$P(y|x) = \prod_{\mu} P_{\mu}(y_{\mu}|x)$$

Factorized prior

$$P^0(x) = \prod_i P_i^0(x_i)$$

Posterior 
$$P(x) = \frac{1}{Z(y)} \left( \prod_{i} P_i^0(x_i) \right) \exp \left[ -\sum_{\mu} E_{\mu}(x, y_{\mu}) \right]$$

$$E_{\mu}(x, y_{\mu}) = -\log P_{\mu}(y_{\mu}|x)$$

# Bayesian inference with many unknown and many measurements

$$P(x) = \frac{1}{Z(y)} \left( \prod_{i} P_i^0(x_i) \right) \exp \left[ -\sum_{\mu} E_{\mu}(x, y_{\mu}) \right]$$

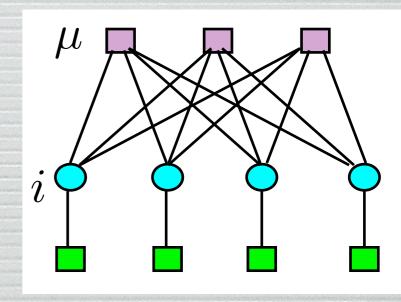
$$E_{\mu}(x, y_{\mu}) = -\log P_{\mu}(y_{\mu}|x)$$

#### Statistical mechanics.

- lacktriangleDiscrete or continuous variables  $x_i$
- ♦ Interactions through  $e^{-E_{\mu}(x,y_{\mu})}$  can be

•pairwise: 
$$E_{\mu} = J_{\mu} x_{i(\mu)} x_{j(\mu)}$$

- multibody
- ◆Disordered system, ensemble
- ◆Thermodynamic limit, phase transitions

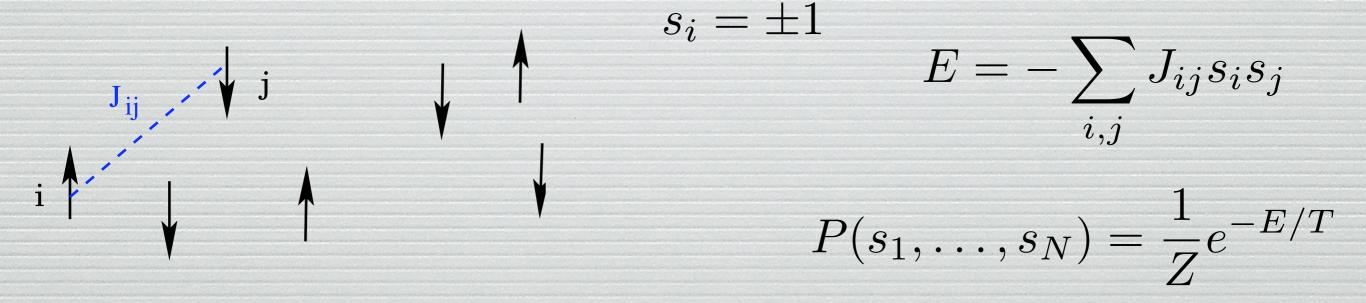


« Spin glass »

## Spin glasses

• Disordered magnetic systems

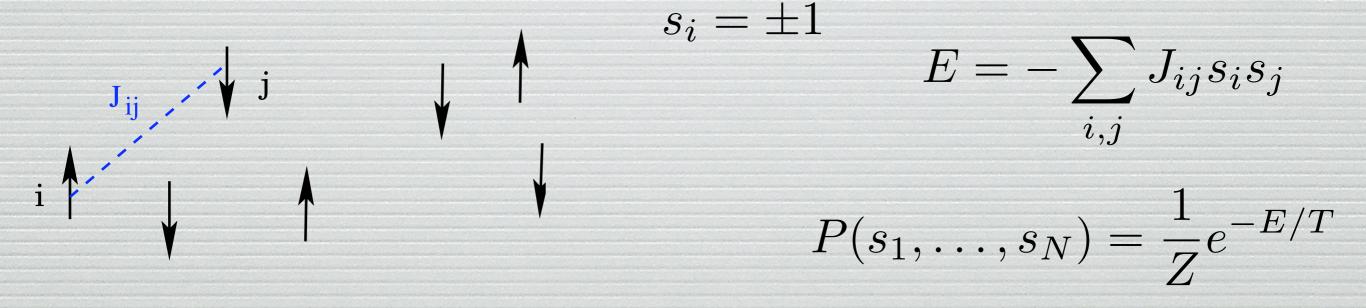
e.g.: CuMn



## Spin glasses

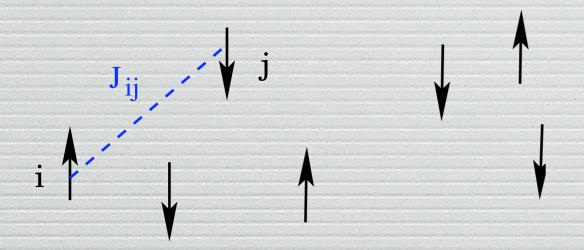
Disordered magnetic systems

e.g.: CuMn

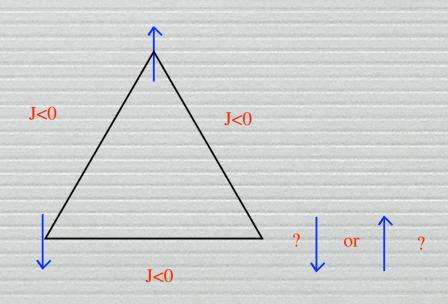


Each spin 'sees' a different local field

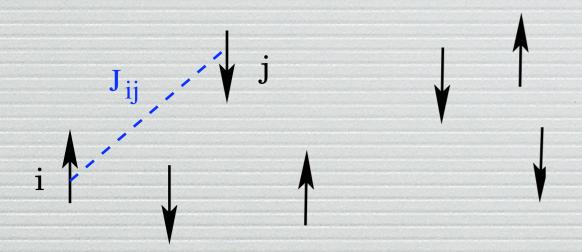
 Many atoms, microscopic interactions are known, "disordered systems"
 e.g.: CuMn



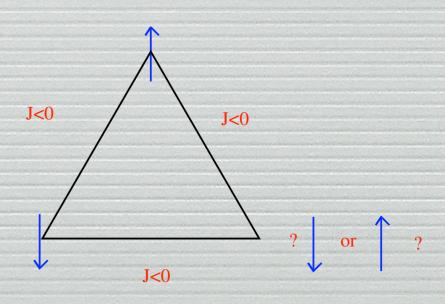
- Deach spin 'sees' a different local field
- → Low temperature: frustration

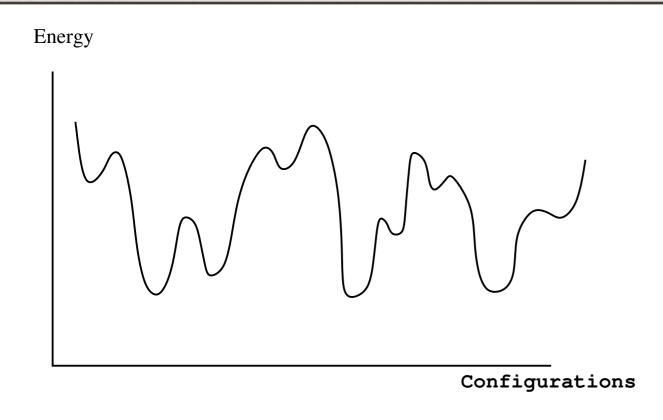


 Many atoms, microscopic interactions are known, "disordered systems"
 e.g.: CuMn



- Deach spin 'sees' a different local field
- Low temperature: frustration
- > Spins freeze in random directions
- Difficult to find min. of E

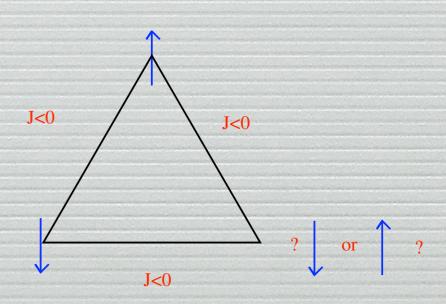


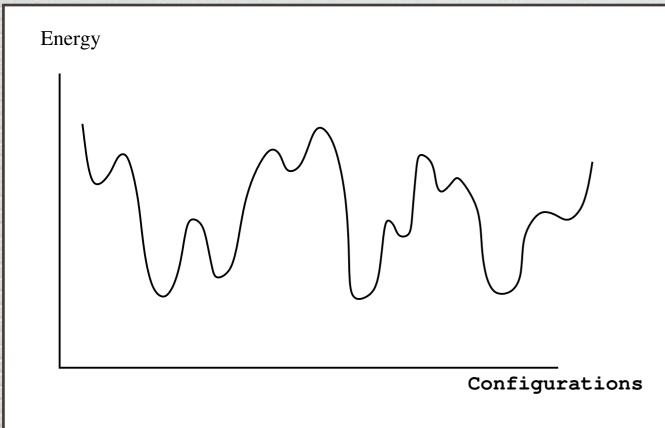


Many quasi-ground states unrelated by symmetries, many metastable states

Slow dynamics, aging

- Spin glass
- Deach spin 'sees' a different local field
- Low temperature: frustration
- > Spins freeze in random directions
- Difficult to find min. of E

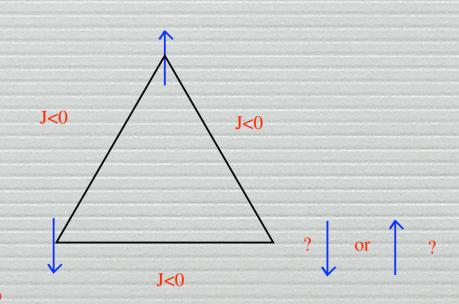




Many quasi-ground states unrelated by symmetries, many metastable states

Slow dynamics, aging

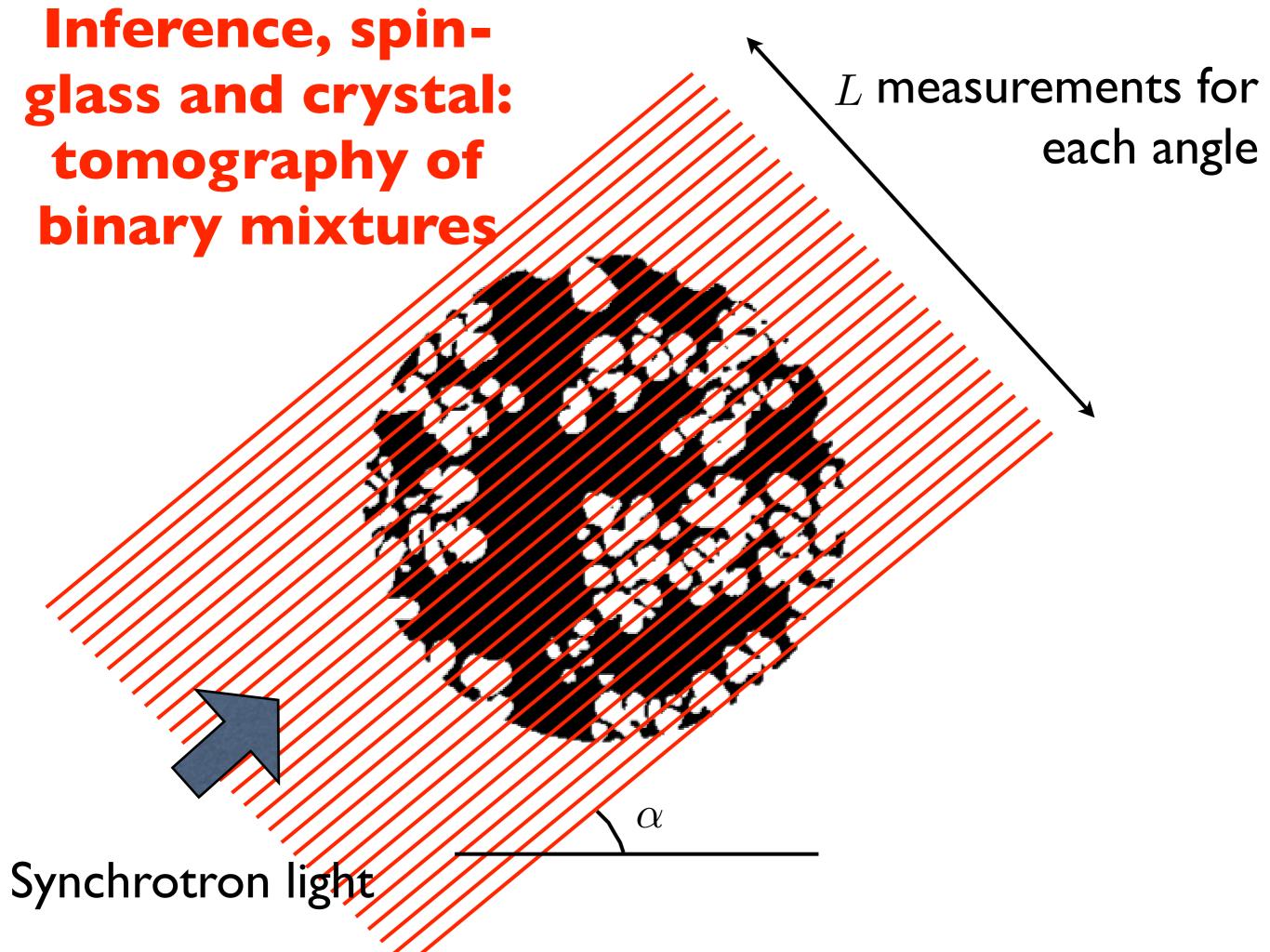
- Spin glass
- Deach spin 'sees' a different local field
- Low temperature: frustration
- > Spins freeze in random directions
- Difficult to find min. of E

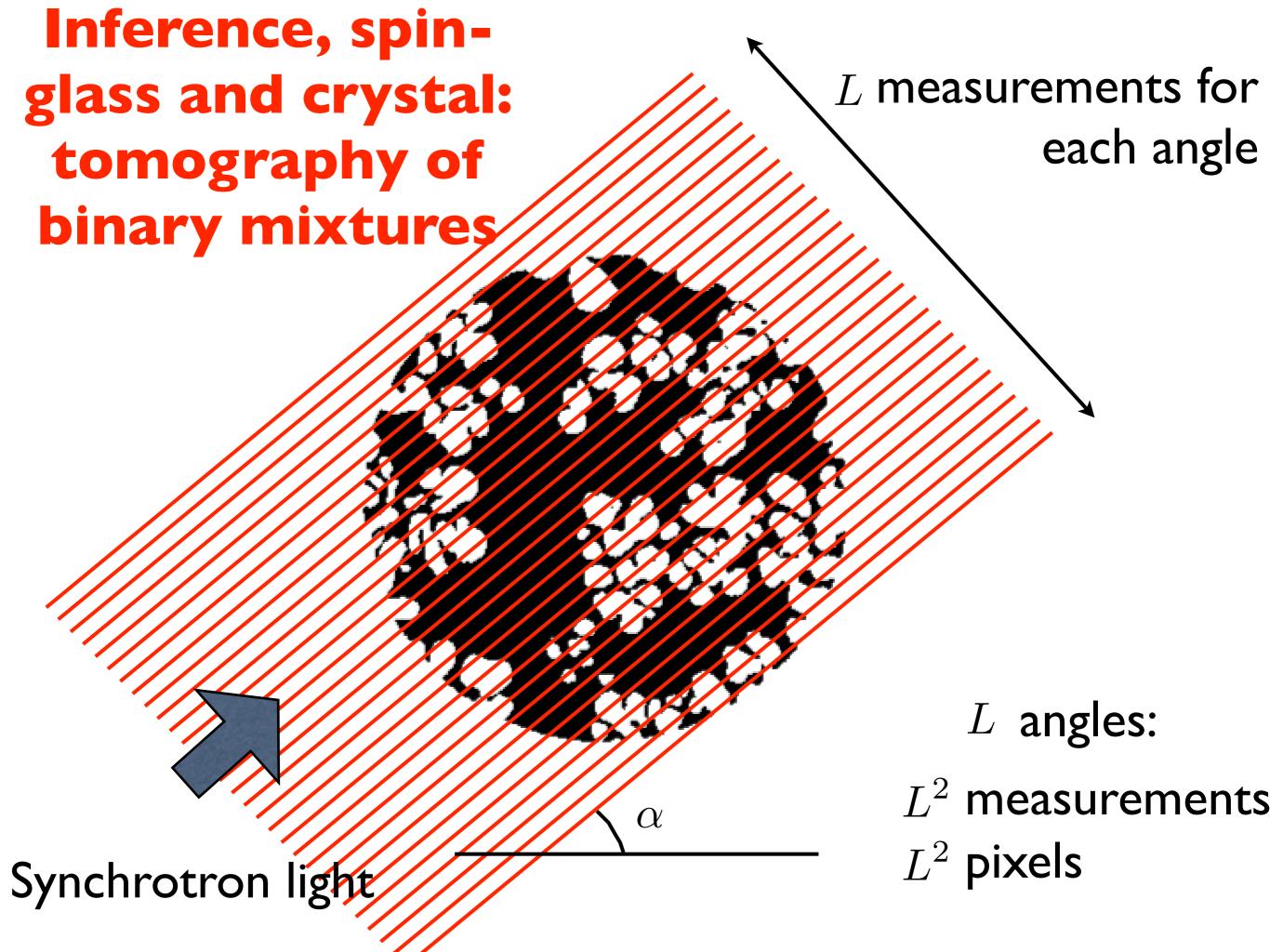


Useless, but thousands of papers...

Inference, spinglass and crystal: tomography of binary mixtures







# Tomography of binary mixtures

L angles:

 $L^2$  measurements

 $L^2$  pixels

sample size L

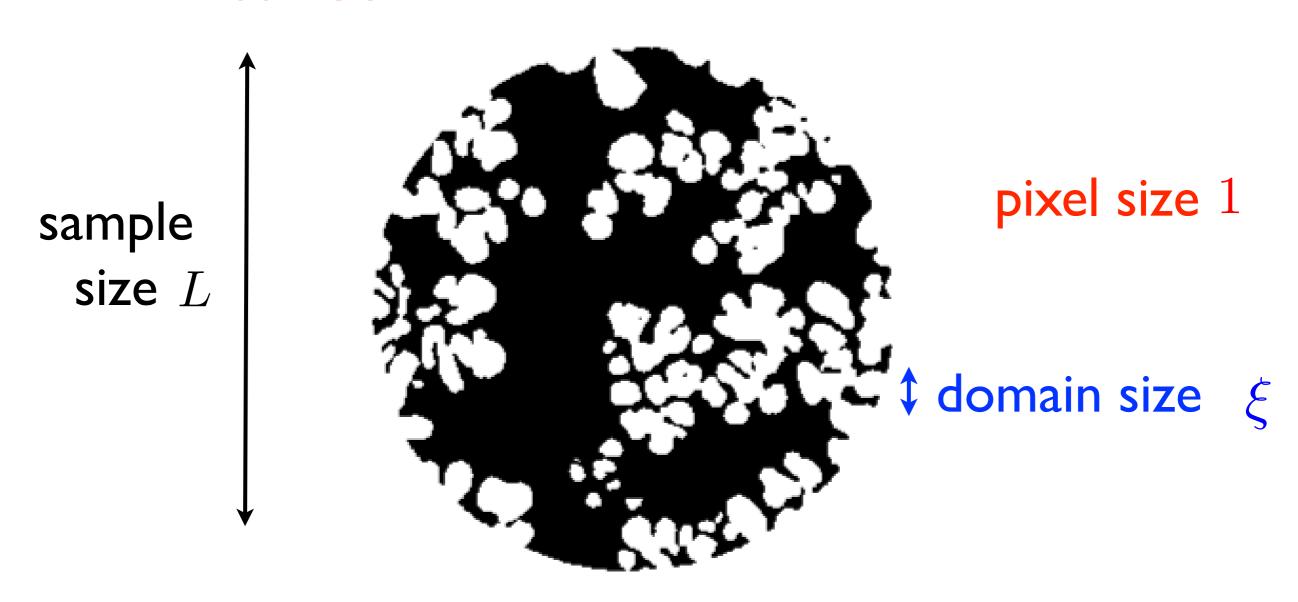
pixel size 1

 $\uparrow$  domain size  $\xi$ 

If the size of domains is  $\gg$  pixel: possible to reconstruct with  $\ll L^2$  measurements

 $\xi \gg 1$ 

# Tomography of binary mixtures



If the size of domains is  $\gg$  pixel: possible to reconstruct with  $\ll L^2$  measurements

 $\xi \gg 1$ 

## Tomography of binary mixtures

sensing

This picture, digitalized on  $1000 \times 1000$  grid, can be

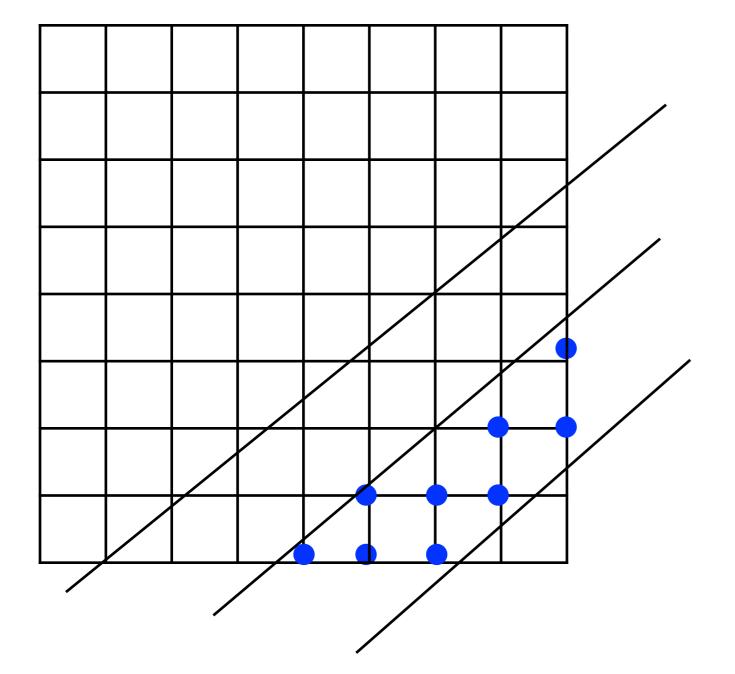
> reconstructed fom measurements with

> > 16 angles



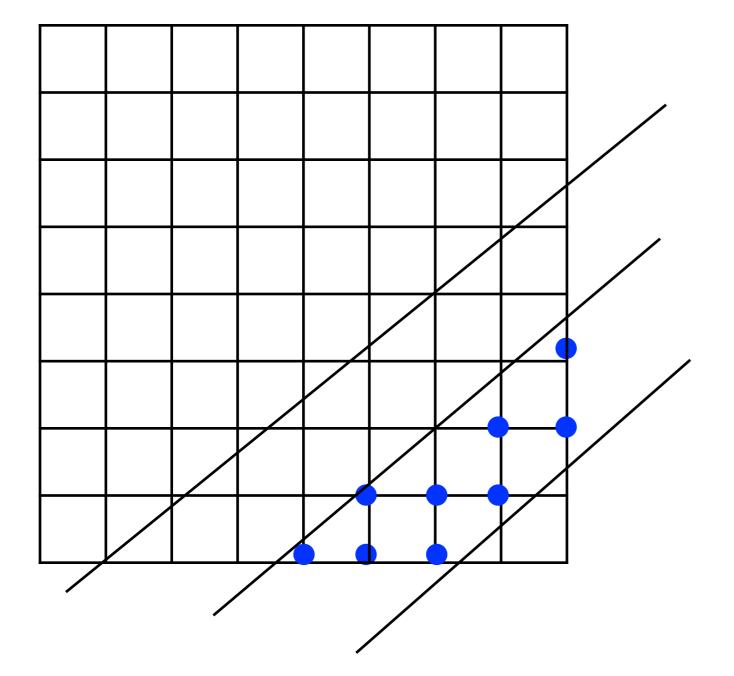
Gouillart et al., Inverse problems 2013

If the size of domains is  $\gg$  pixel: possible to reconstruct with  $\ll L^2$  measurements



$$\mu \qquad y_{\mu} = \sum_{i \in \partial \mu} s_i$$

Prior knowledge on  $\{s_i\}$ : neighboring pixels more likely to be equal



$$\mu \qquad y_{\mu} = \sum_{i \in \partial \mu} s_i$$

Prior knowledge on  $\{s_i\}$ : neighboring pixels more likely to be equal

$$P(S) = \prod_{ij \in \text{grid}} e^{Js_i s_j} \prod_{\mu} \delta \left( y_{\mu}, \sum_{i \in \partial \mu} s_i \right)$$

prior measurement

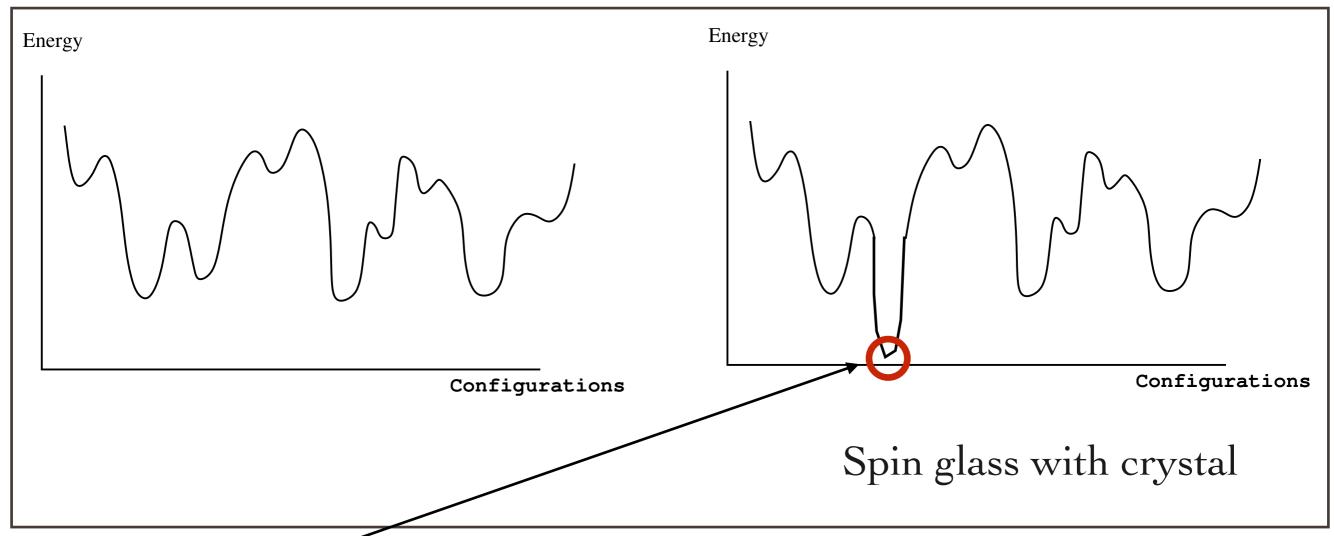
Studied with mean-field

$$P(S) = \prod_{ij \in \text{grid}} e^{Js_i s_j} \prod_{\mu} \delta \left( y_{\mu}, \sum_{i \in \partial \mu} s_i \right)$$

If enough measurements: The most probable S (the ground state) gives the perfect composition of the sample.

« Crystal » : much more probable





« Crystal » : much more probable

But in some cases « crystal hunting » may be computationally very hard!



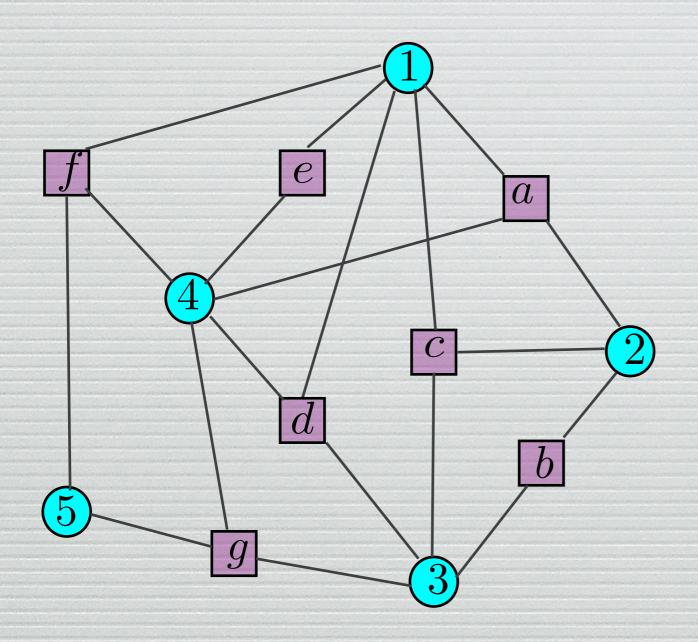
# Inference with many unknowns: « crystal hunting » with mean-field based algorithms

### Historical development of mean field equations:

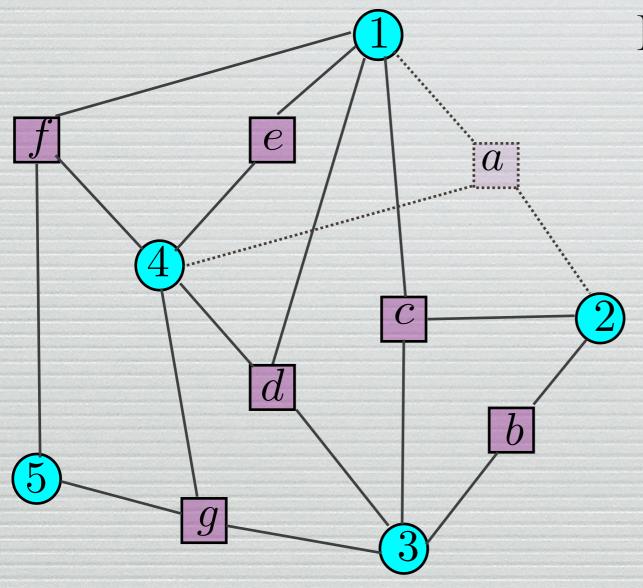
- In homogeneous ferromagnets:
  - Weiss (infinite range, 1907)
  - Bethe Peierls (finite connectivity, 1935)
- In glassy systems:
  - · Thouless Anderson Palmer 1977,
  - MM Parisi Virasoro 1986 (infinite range)
  - MM Parisi 2001 (finite connectivity)

- As an algorithm:
- Gallager 1963
- Pearl 1986
- MM Parisi Zecchina 2002
- Kabashima 2003, 2008
- Donoho Bayati Montanari 2009
- Rangan 2010
- Krzakala MM Zdeborova 2012

## BP = Bethe-Peierls = Belief Propagation



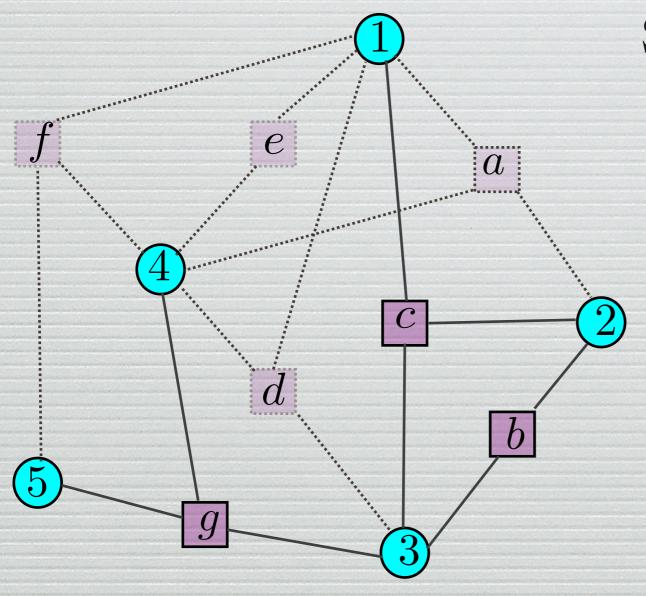
$$P(x_1, \dots, x_5) = \psi_a(x_1, x_2, x_4) \psi_b(x_2, x_3) \dots$$



First type of messages:

Probability of  $x_1$  in the absence of a:

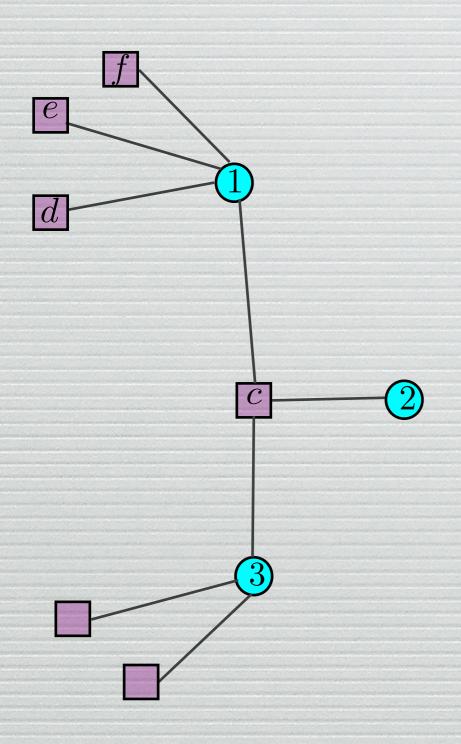
$$m_{1 \rightarrow a}(x_1)$$

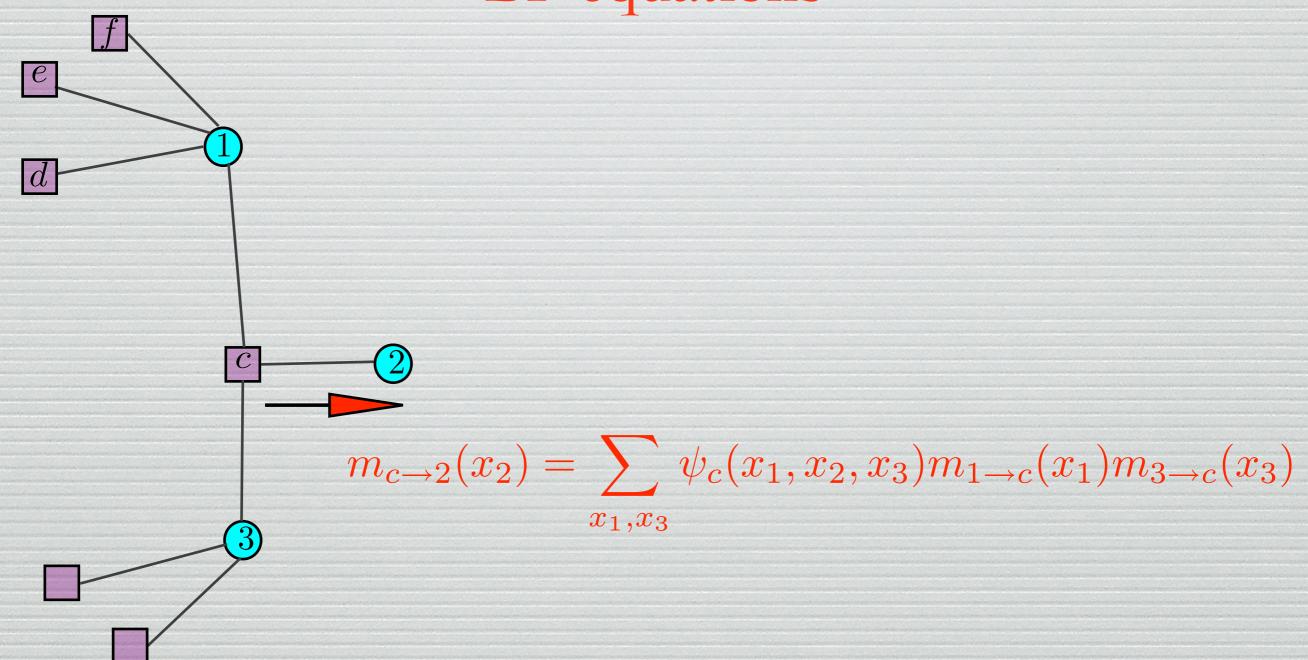


Second type of messages:

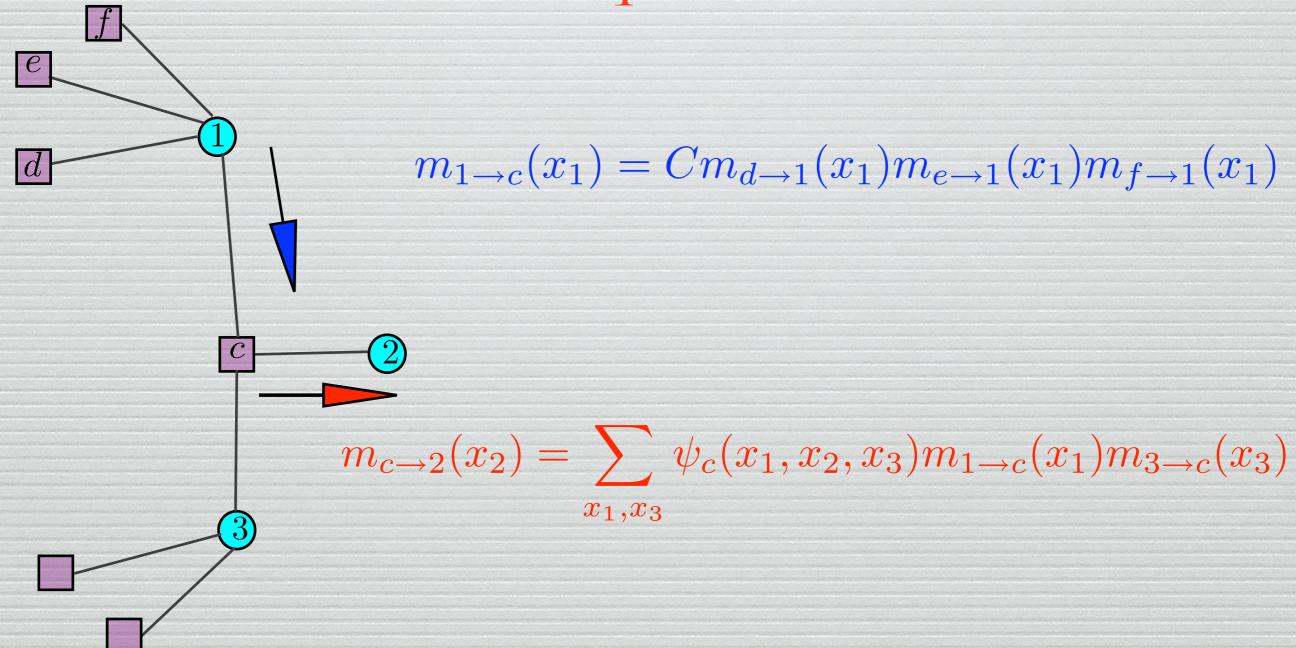
Probability of  $x_1$  when it is connected only to c:

$$m_{c \to 1}(x_1)$$

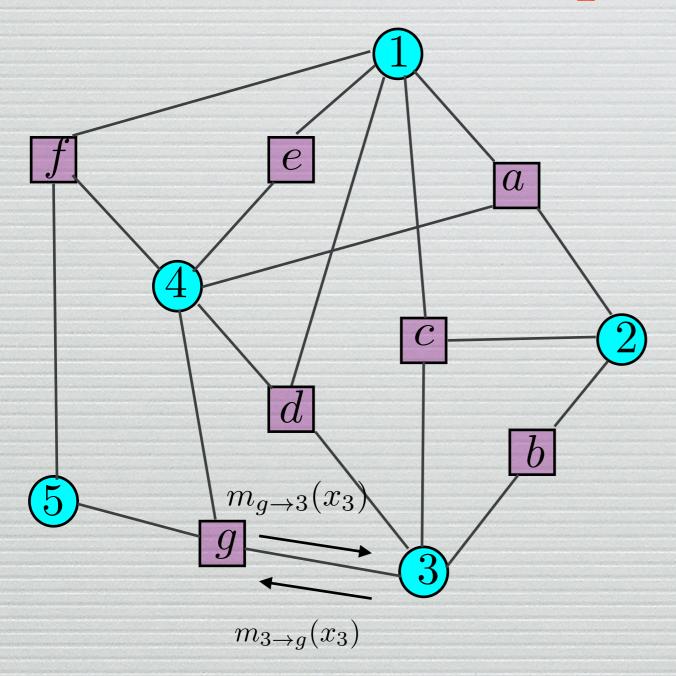




#### BP equations

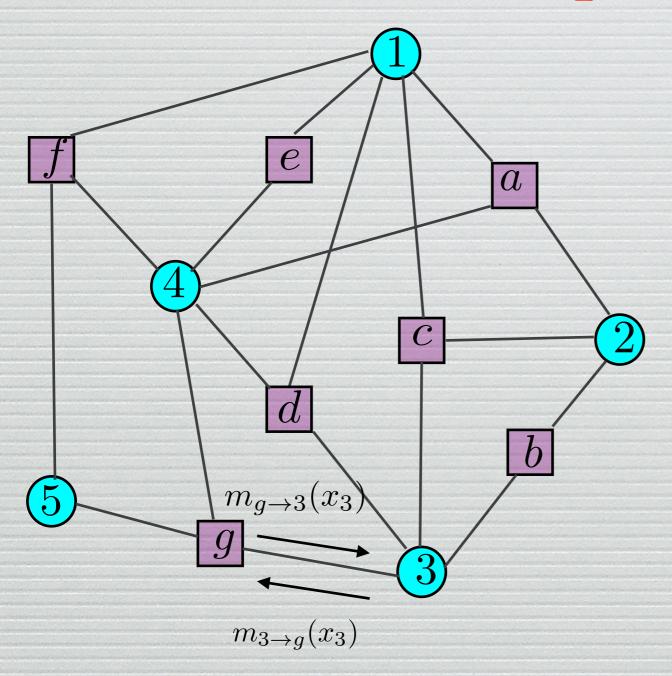


#### BP equations



Propagate messages along the edges, update messages at vertices, using elementary local probabilistic rules

#### BP equations



Propagate messages along the edges, update messages at vertices, using elementary local probabilistic rules

Closed set of equations: two messages "propagate" on each edge of the factor graph.

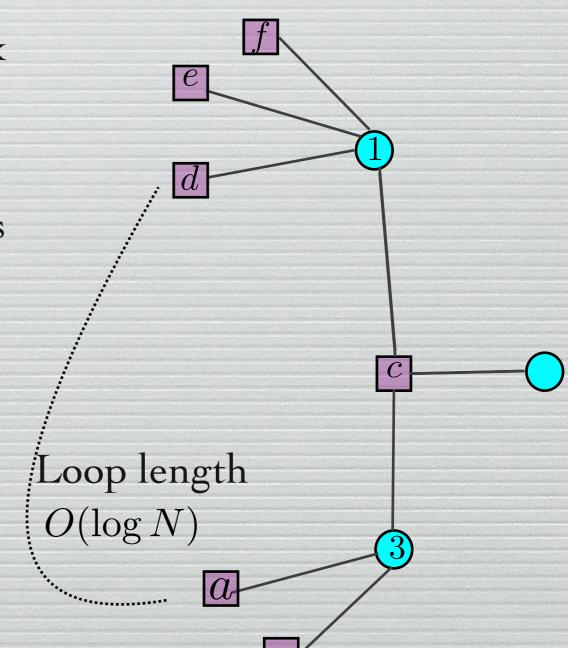
#### When is BP exact?

$$m_{1\to c}(x_1) = Cm_{d\to 1}(x_1)m_{e\to 1}(x_1)m_{f\to 1}(x_1)$$

$$m_{c\to 2}(x_2) = \sum_{x_1,x_3} \psi_c(x_1,x_2,x_3)m_{1\to c}(x_1)m_{3\to c}(x_3)$$

Fluctuations are handled correctly, but beware of correlations

- Exact in one dimension (transfer matrix= dynamic programming)
- Exact on a tree (uncorrelated b.c)
- Exact on locally tree-like graphs (Erdös Renyi etc.) if correlations decay fast enough (single pure state) and uncorrelated disorder
- Exact in infinite range problems if correlations decay fast enough (single pure state) and uncorrelated disorder

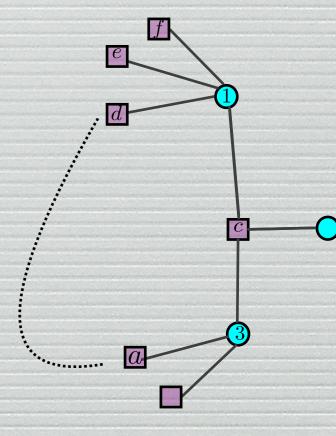


### NB: What happens in a glass phase, when there are many pure states, and therefore many solutions?

BP equations

Correct if, in absence of the i-j interaction, the correlations between k and  $\ell$  can be neglected.

$$m_{i\to\mu}(x_i) = \prod_{\nu(\neq\mu)} m_{\nu\to i}(x_i)$$



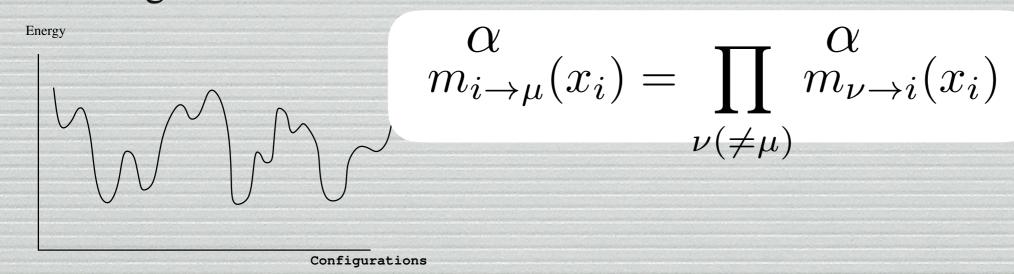
Loop length  $O(\log N)$ 

NB: What happens in a glass phase, when there are many pure states, and therefore many solutions?

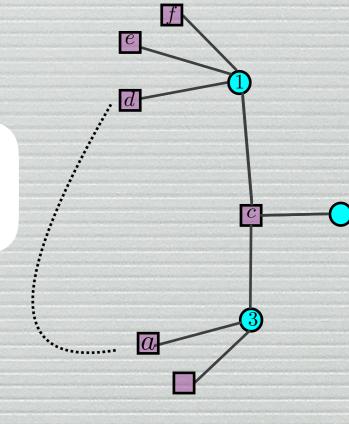
BP equations

$$m_{i\to\mu}(x_i) = \prod_{\nu(\neq\mu)} m_{\nu\to i}(x_i)$$

Correct if, in absence of the i-j interaction, the correlations between k and  $\ell$  can be neglected.



Glassy phase: many states, many solutions of BP



Loop length  $O(\log N)$ 

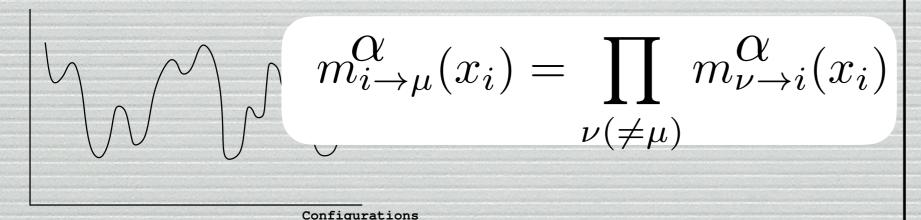
#### 2) What happens in a glass phase, when there are many pure states, and therefore many solutions?

BP equations

$$m_{i \to \mu}(x_i) = \prod_{\nu (\neq \mu)} m_{\nu \to i}(x_i)$$
 Statistics of  $m_{i \to \mu}^{\alpha}(x_i)$  over the many states  $\alpha$ 

Correct if, in absence of the i-j interaction, the correlations between k and  $\ell$  can be neglected.

Energy



Glassy phase: many states, many solutions of BP

 $P_{i\rightarrow \mu}(m)$ 

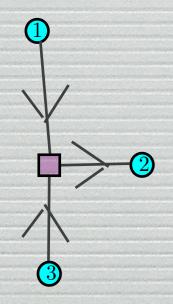
related to  $P_{\nu \to i}(m)$ 

Survey propagation (SP) MM Parisi Zecchina 2002

#### Power of message passing algorithms

Approximate solution of very hard, and very large constraint satisfaction problems, ...FAST! (typically linear time)

- BP: Best decoders for LDPC error correcting codes
- SP: Best solver of random satisfiability problems
- BP: Best algorithm for learning patterns in neural networks (e.g. binary perceptron)
- Data clustering, graph coloring, Steiner trees, etc...
- Fully connected networks : TAP (=AMP). Compressed sensing, linear estimation, etc.

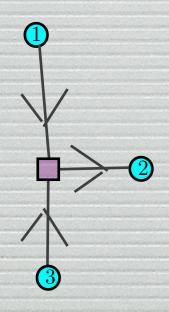


Local, simple update equations:
Each message is updated using
information from incoming
messages on the same node.
Distributed, solves hard global pb

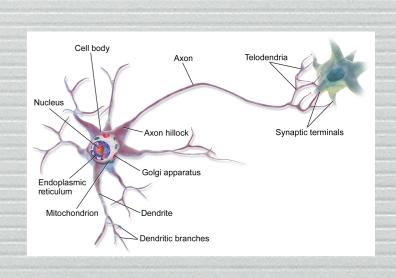
#### Power of message passing algorithms

Approximate solution of very hard, and very large constraint satisfaction problems, ...FAST! (typically linear time)

- BP: Best decoders for LDPC error correcting codes
- SP: Best solver of random satisfiability problems
- BP: Best algorithm for learning patterns in neural networks (e.g. binary perceptron)
- Data clustering, graph coloring, Steiner trees, etc...
- Fully connected networks : TAP (=AMP). Compressed sensing, linear estimation, etc.



Local, simple update equations:
Each message is updated using
information from incoming
messages on the same node.
Distributed, solves hard global pb



# An example of mean-field based inference: Compressed sensing

#### Applications:

- Tomography
- MNR
- Single pixel camera
- Satellite images

~ ...

#### Connected to:

- linear regression
- perceptron learning

# An example of mean-field based inference: Compressed sensing

Applications:

- Tomography
- MNR
- Single pixel camera
- Satellite images

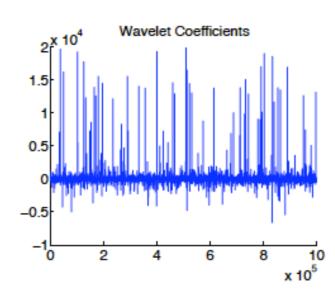
~ ...

Connected to:

- linear regression
- perceptron learning

Sparse data (in appropriate basis)+
linear measurements

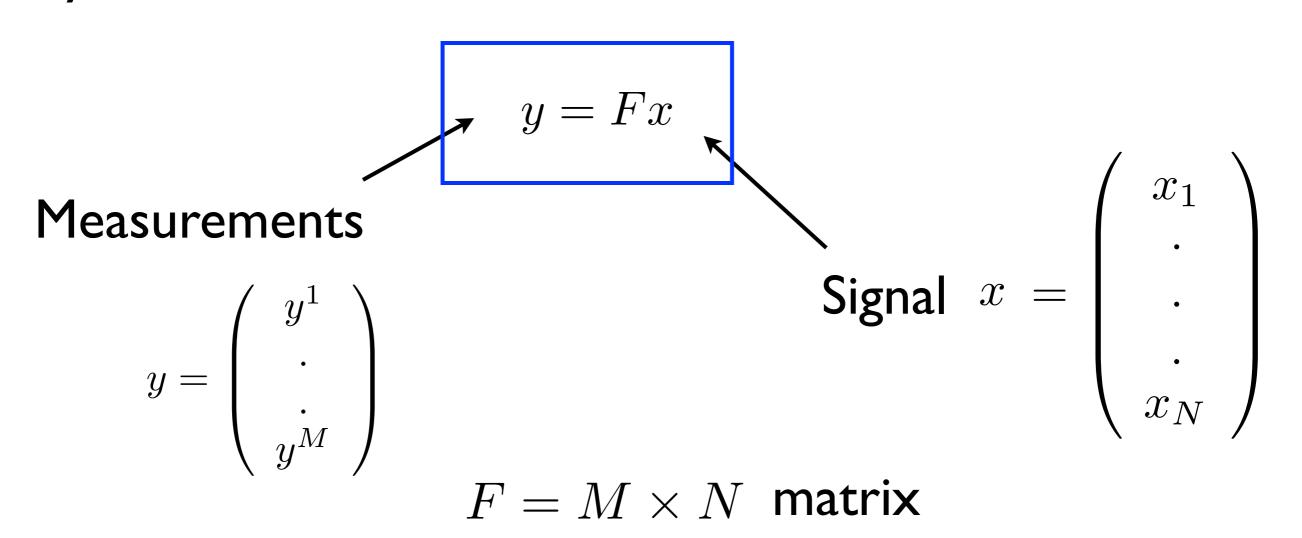






### Benchmark: noiseless limit of compressed sensing with iid measurements

System of linear measurements



Random F: «random projections» (incoherent with signal)

Pb: Find x when M < N and x is sparse

#### Phase diagram

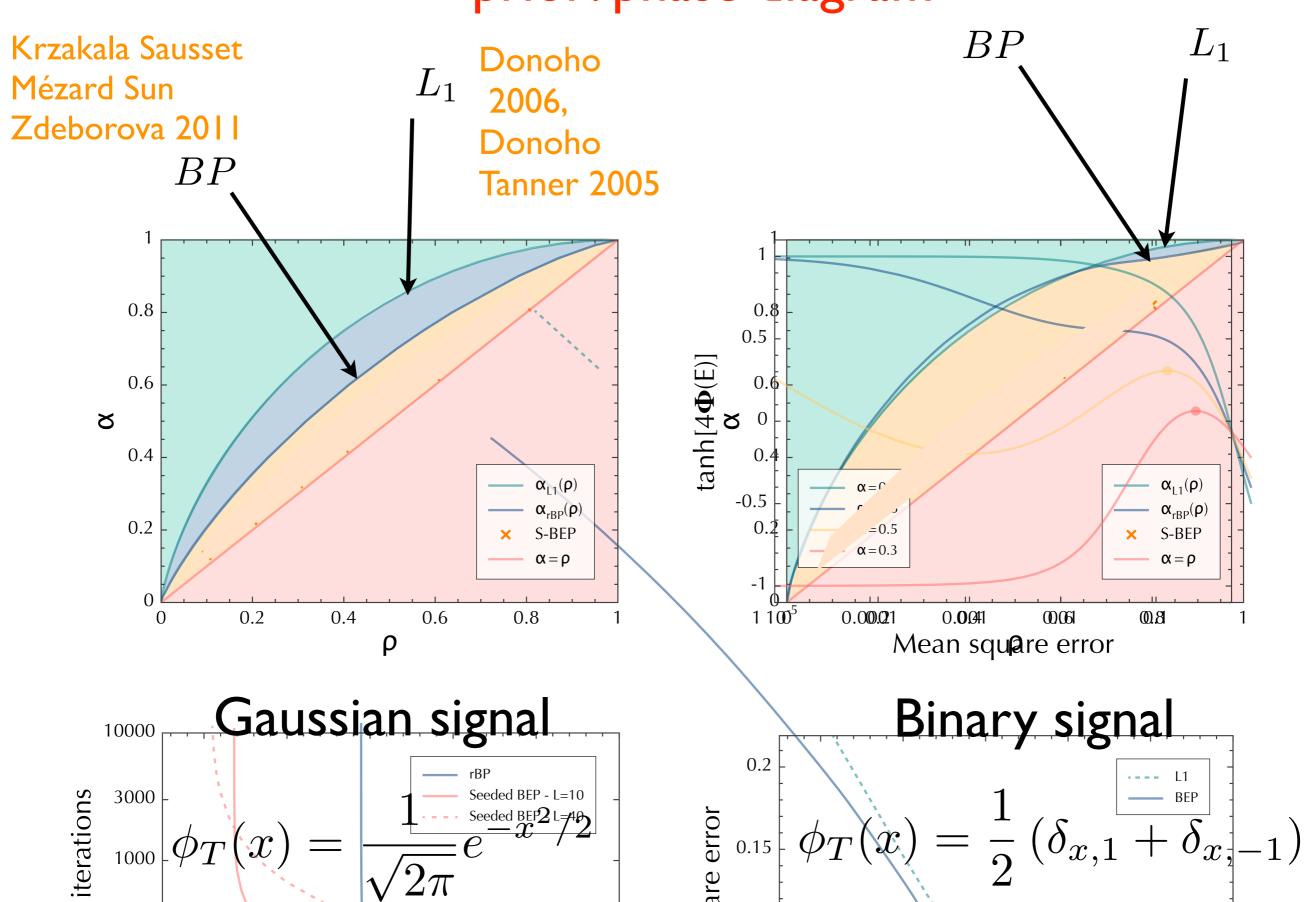
«Thermodynamic limit»

$$N\gg 1$$
 variables 
$$R=\rho N \quad \text{non-zero variables}$$
 
$$M=\alpha N \quad \text{equations}$$

- Solvable by enumeration when  $\alpha > \rho$  but  $O(e^N)$
- $\ell_1$  norm approach Find a N component vector x such that the M equations y=Fx are satisfied and  $||x||_1$  is minimal
- **AMP** = Bayesian approach Planted:  $\phi_T(x)$

$$P(\mathbf{x}) = \prod_{i=1}^{N} [(1-\rho)\delta(x_i) + \rho\phi(x_i)] \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i\right)$$

### Performance of AMP with Gauss-Bernoulli prior: phase diagram



### Analysis of random instances: phase transitions

N (real) variables, M measurements (linear functions)

Analysis of random instances: phase transitions

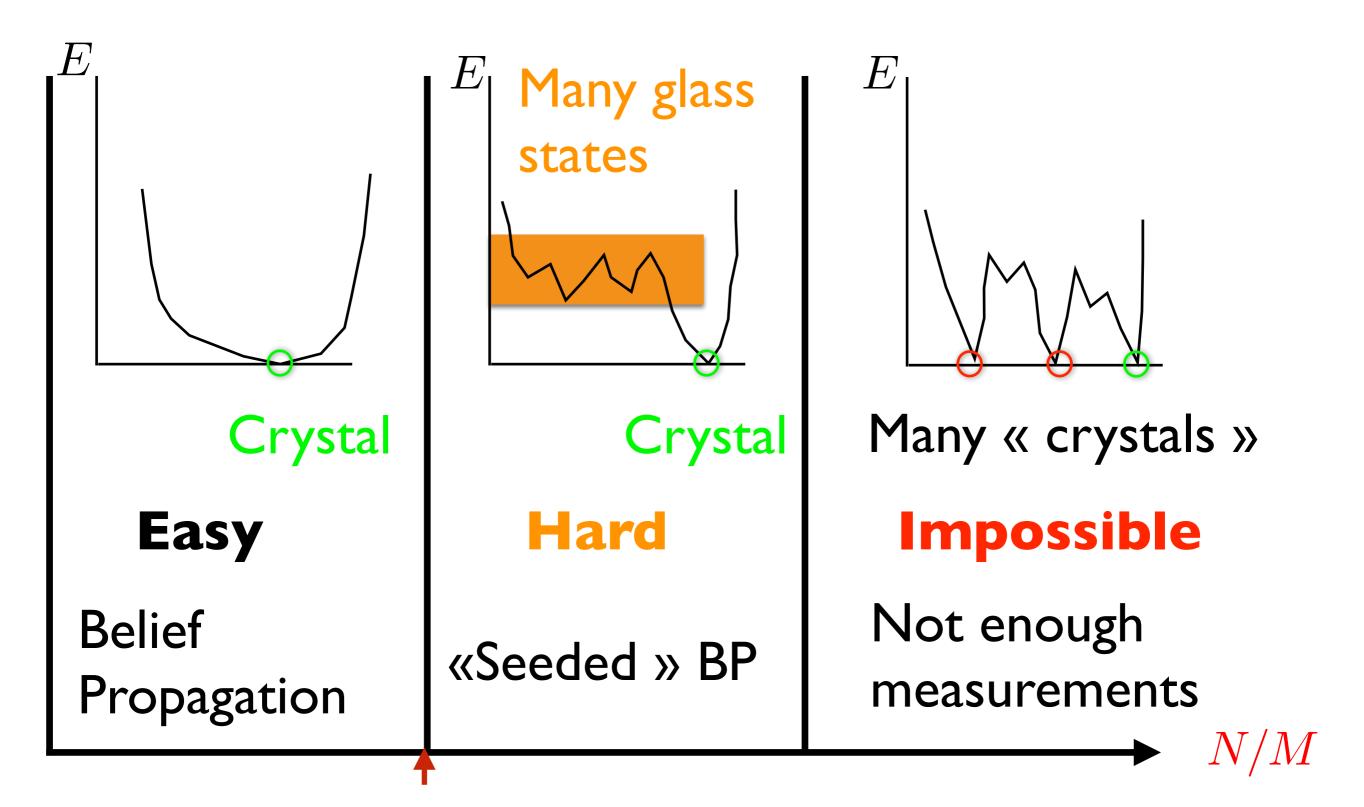
Reconstruction of signal using BP. Fixed  $\rho$ , decrease  $\alpha$ 

Easy Hard Impossible

Algorithmic threshold

Ultimate (information theoretic) threshold

 $N/M = 1/\alpha$ 



Dynamical phase transition. Ubiquitous in statistical inference. Conjecture « All local algorithms freeze »... How universal?

### Step 3: design the measurement matrix in order to get around the glass transition

Getting around the glass trap: design the matrix F so that one nucleates the naive state (crystal nucleation idea,

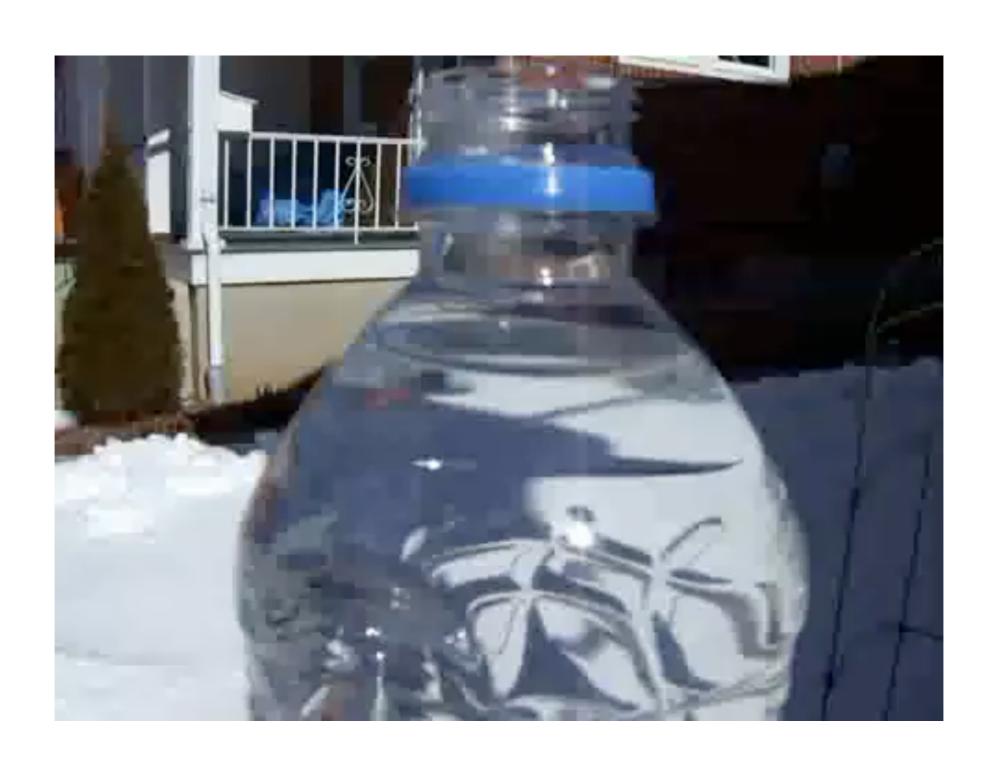
...borrowed from error correcting codes : « spatial coupling »)

Felström-Zigangirov, Kudekar Richardson Urbanke, Hassani Macris Urbanke,

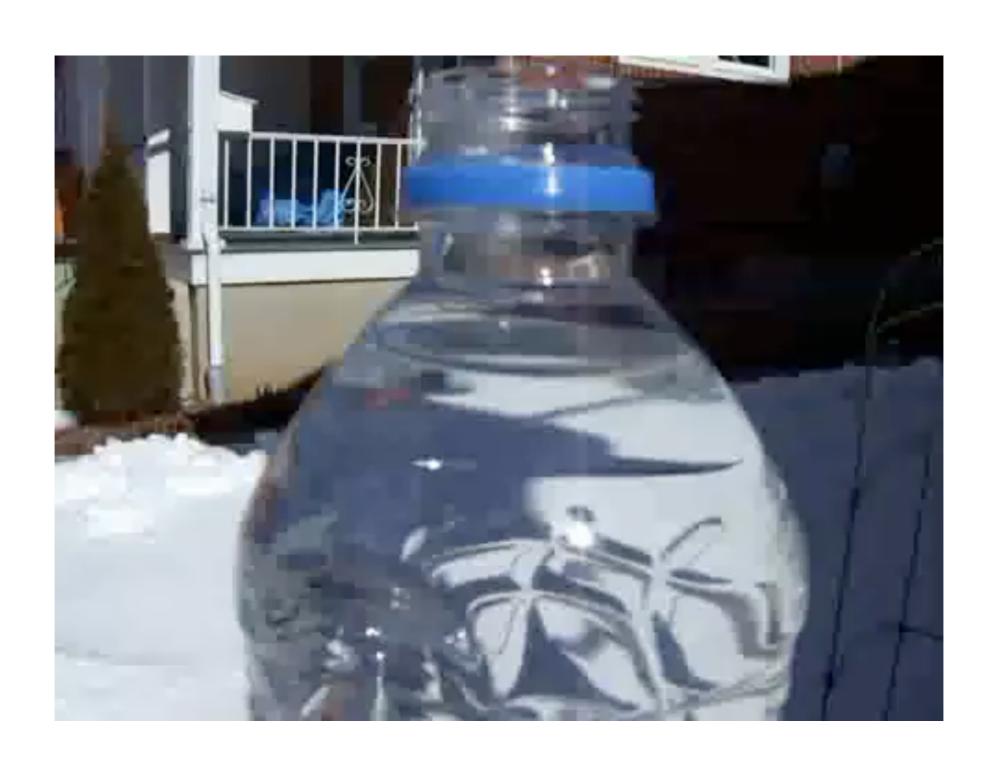
• • •

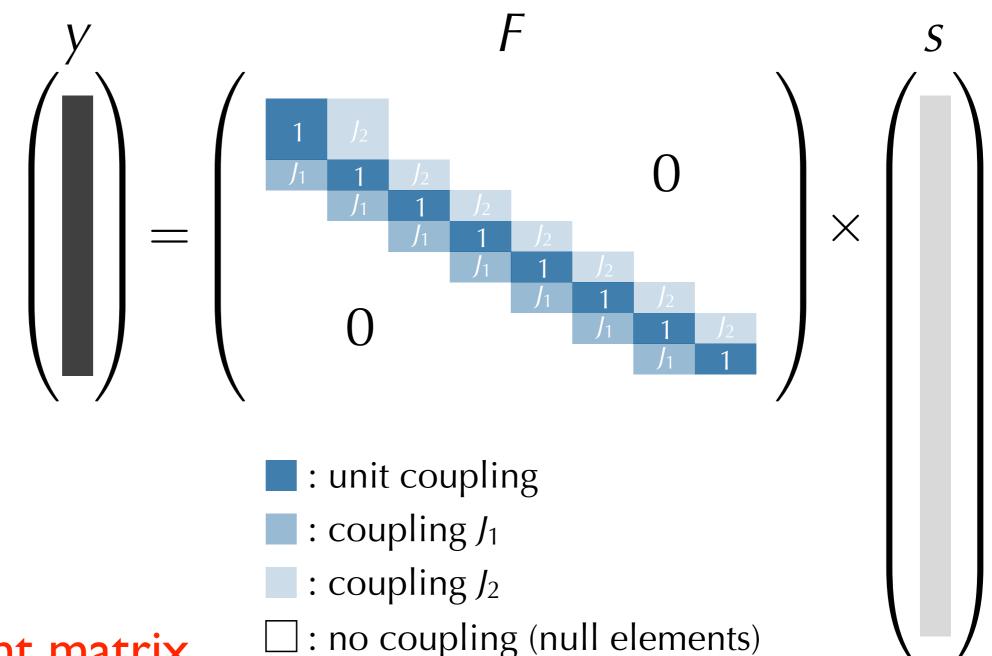
«Seeded BP»

#### **Nucleation and seeding**



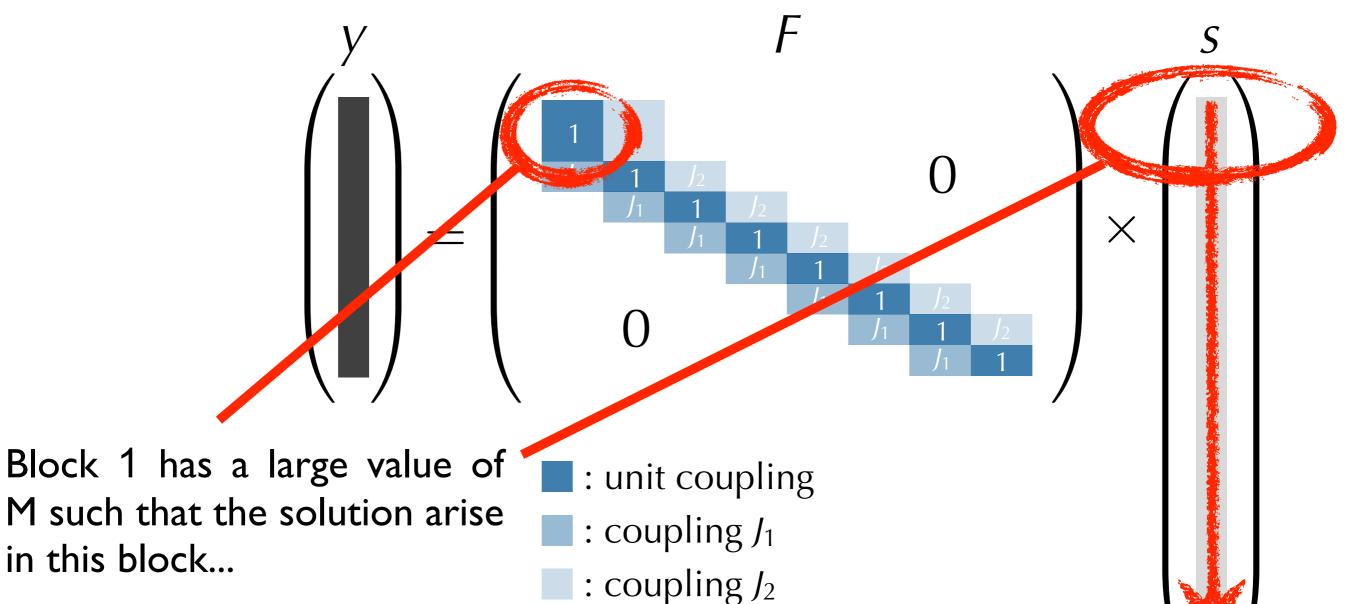
#### **Nucleation and seeding**





Structured measurement matrix. Variances of the matrix elements

 $F_{\mu i}=$  independent random Gaussian variables, zero mean and variance  $J_{b(\mu)b(i)}/N$ 



: no coupling (null elements)

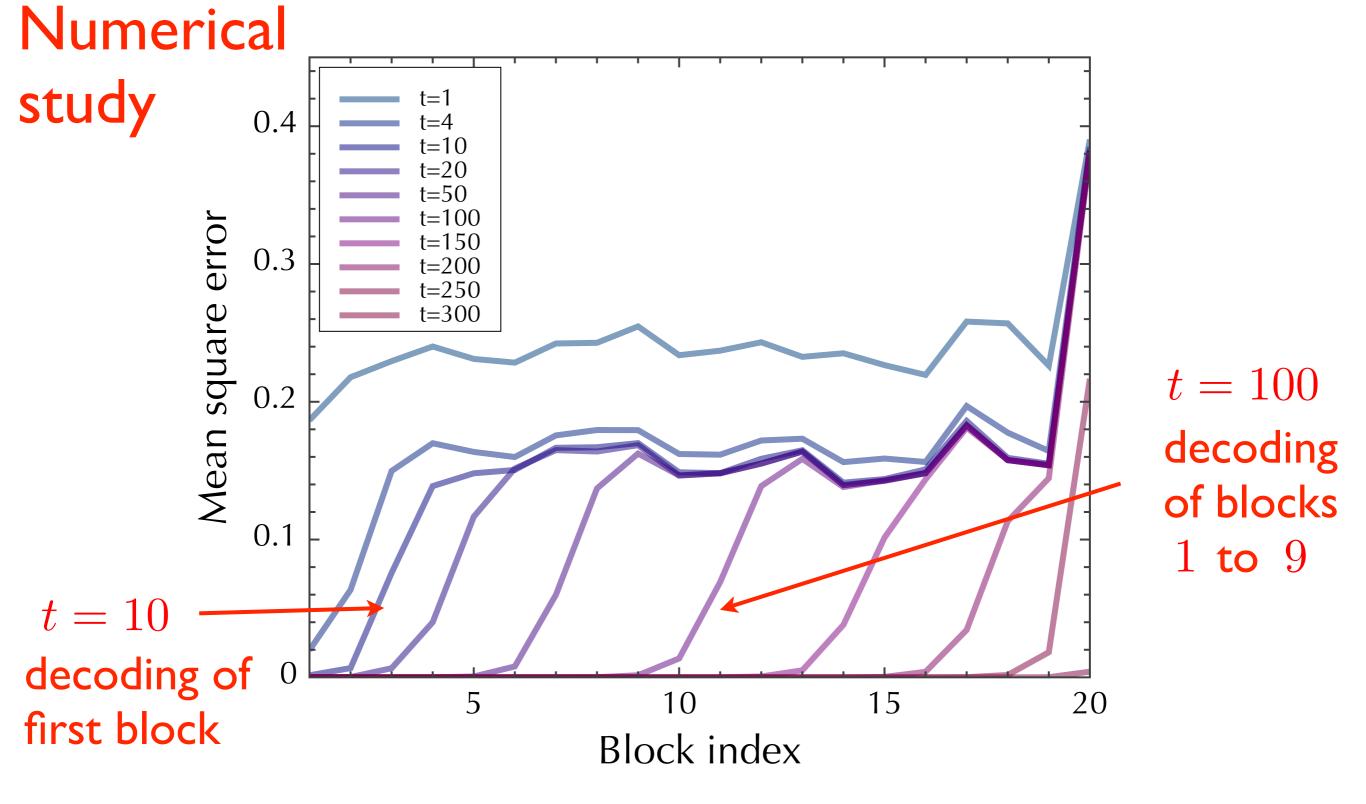
... and then propagates in the whole system!

$$L = 8$$
 
$$N_i = N/L$$
 
$$M_i = \alpha_i N/L$$

$$\alpha_1 > \alpha_{BP}$$

$$\alpha_j = \alpha' < \alpha_{BP} \quad j \ge 2$$

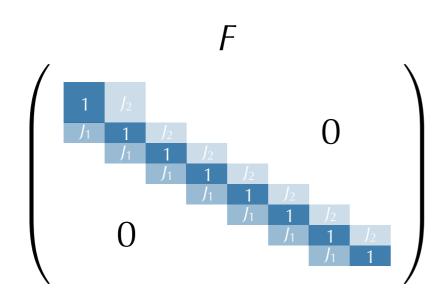
$$\alpha = \frac{1}{L} (\alpha_1 + (L - 1)\alpha')$$



$$L=20$$
  $N=50000$   $\rho=.4$   $J_1=20$   $\alpha_1=1$   $J_2=.2$   $\alpha=.5$ 

# Performance of the probabilistic approach + message passing + parameter learning+ seeding matrix

$$Z = \int \prod_{i=1}^{N} dx_{i} \prod_{i=1}^{N} \left[ (1 - \rho)\delta(x_{i}) + \rho\phi(x_{i}) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i}x_{i}\right)$$



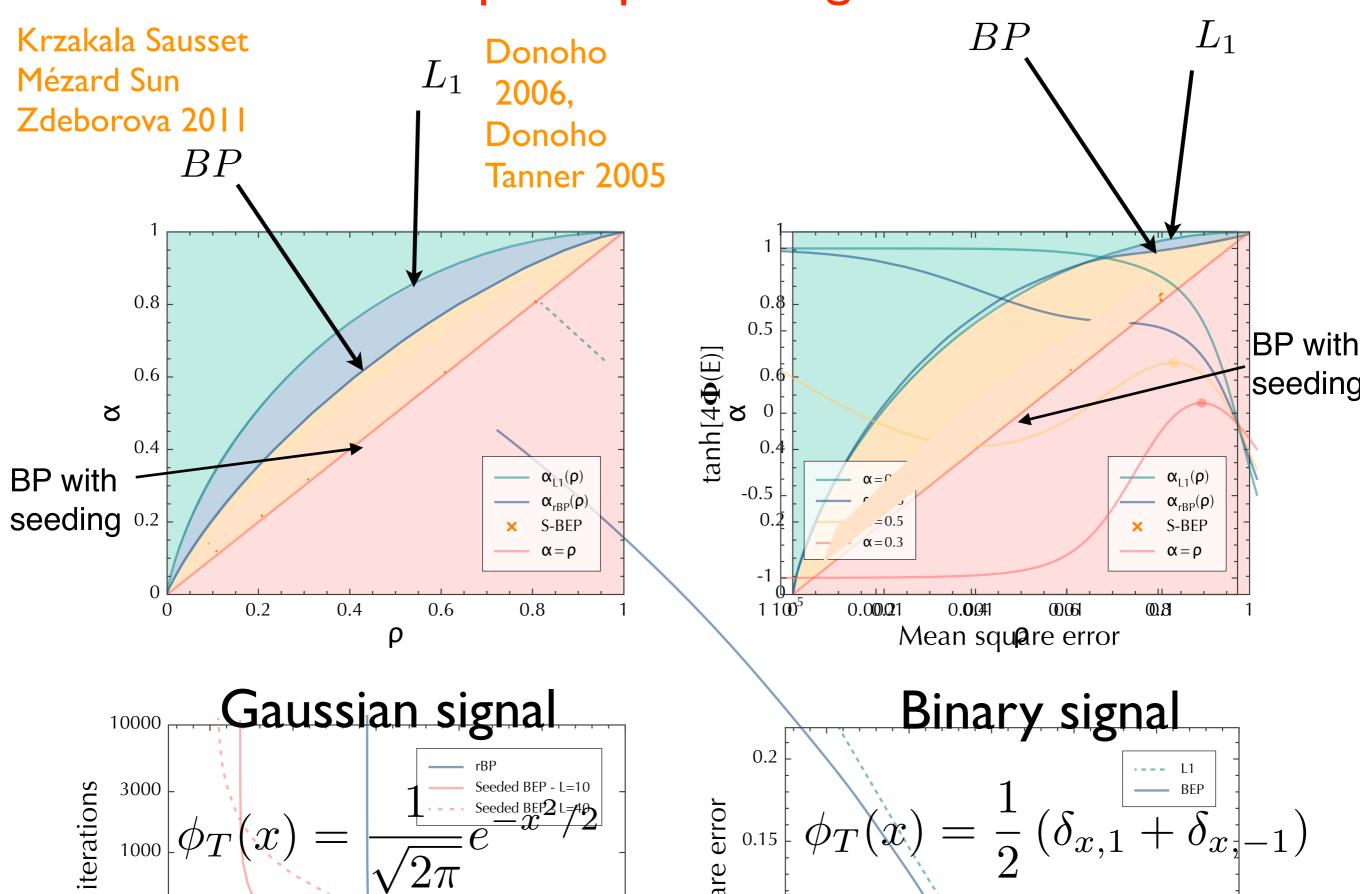
- **▶** Simulations
- Analytic approaches (replicas and cavity)

$$\rightarrow \alpha_c = \rho_0$$

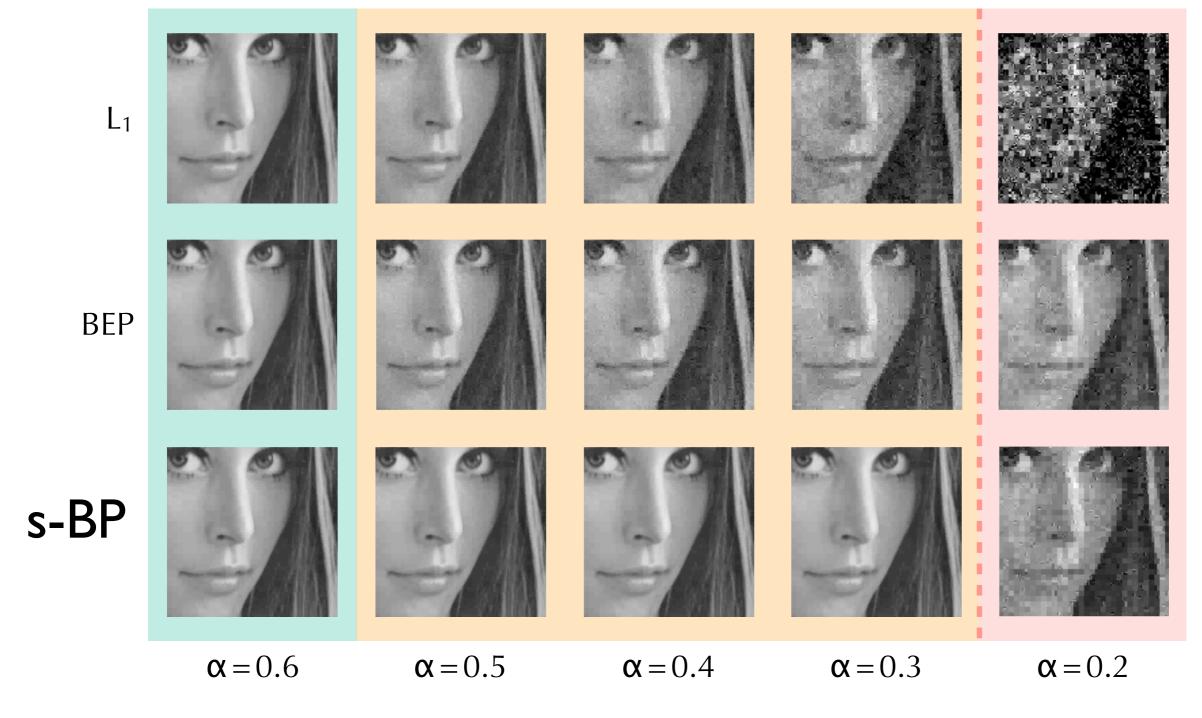
Reaches the ultimate information-theoretic threshold

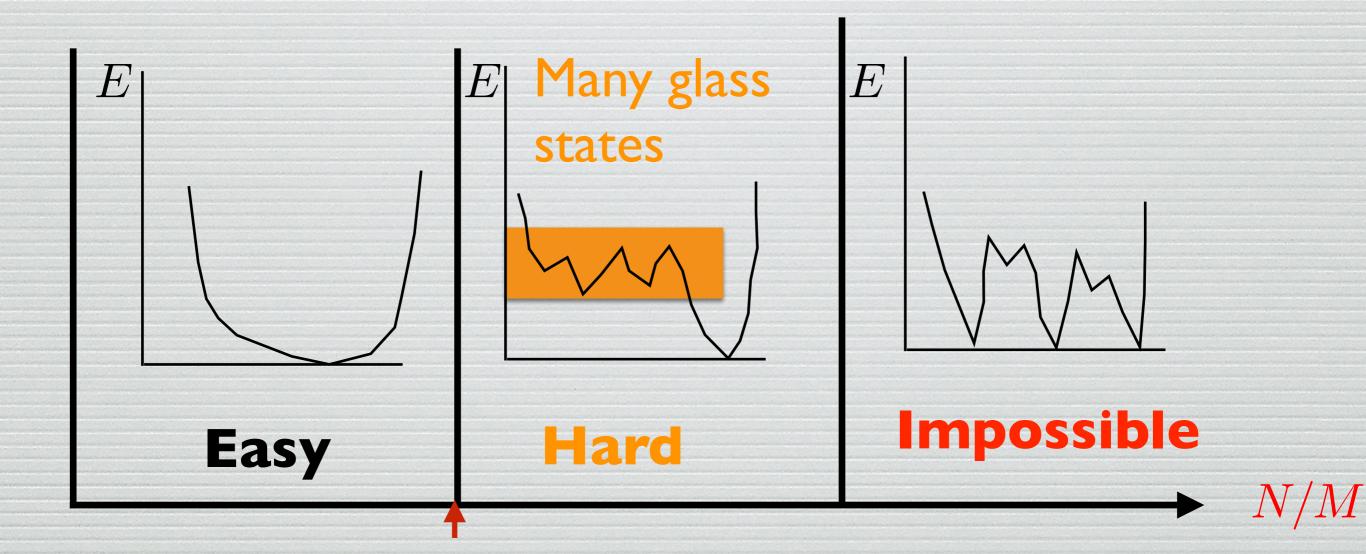
Proof: Donoho Javanmard Montanari

### Performance of AMP with Gauss-Bernoulli prior: phase diagram



 $\alpha = \rho \approx 0.24$ 





Phase transitions are crucial in large inference problems
Hard-Impossible = absolute limit (Shannon-like)
Easy- Hard = limit for large class of algorithms (local)

#### The spin glass cornucopia

A very sophisticated and powerful corpus of conceptual and methodological approaches has been developed (replicas, cavity, TAP,...) mostly in the years 1975-2000, and has found applications in many different fields of information theory and computer science

Portrait of Ottavio Strada,
Tintoretto, Venice 1567
Rijk's Museum Amsterdam



#### Thanks

Jean Barbier, Emmanuelle Gouillart, Yoshiyuki Kabashima, **Florent Krzakala**, Ayaka Sakata, François Sausset, Yifan Sun, **Lenka Zdeborova**, Pan Zhang,...



#### The spin glass cornucopia

A very sophisticated and powerful corpus of conceptual and methodological approaches has been developed (replicas, cavity, TAP,...) mostly in the years 1975-2000, and has found applications in many different fields of information theory and computer science

Portrait of Ottavio Strada,
Tintoretto, Venice 1567
Rijk's Museum Amsterdam

